Two-particle azimuthal correlation
analysis in photoproduction

* Analysis of two-particle correlations searching for collective behavior in DIS
has been finished arXiv: 1912.07431.

* Positive referee responses from JHEP have been received on Jan 25™.
* The analysis can be extended to photoproduction and diffractive events.
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https://arxiv.org/abs/1912.07431
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The average size of the interaction region (~1/Q) inside the proton is very small.
The energy deposition can be quite large since Q* >> 1.

In heavy-ion collisions, where collective behavior is observed, the energy deposition is
also quite large.

This made DIS an interesting regime to look for collective behavior.
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In PHP larger interaction regions are created since Q2 << 1.
In heavy-ion collisions, where collective behavior is observed, large interaction regions

are produced.
This makes PHP an interesting regime to look for collective behavior.



Photoproduction event selection

There is no dedicated PHP trigger.

However, we could utilize jet triggers to obtain a PHP dominated sample.
Single jet and dijet triggers:
HFLO5, HPPO2, HPPO09, HPP11, HPP14, HPP29, HPP3O0.

First step, as suggested by Achim, is to rerun the DIS analysis with these triggers
added on top.

Determine if the deviations of the ZEUS data from the MC are at a comparable level
to the just published DIS analysis.

If this is satisfied, then our conclusion of jets being mainly responsible for the
observed two-particle correlations in DIS remains intact.

Two-particle correlation observable
{2} = ((cosn(p1 — @2)))

Projected against

Nrec |An| = |1 — 12| (pr) = (pT.1 + Ppr2)/2
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» Jet triggered DIS events represent a small subset of the full DIS sample.



Control plot figure 3

DIS analysis DIS analysis
from the paper + jet triggers
—_— p ~—~ 0.2 == gl <
N 0.4re e ZEUSNCDIS366pb" | O\ . {5 =318 GeV N e ZEUSNCDIS366pb" | QI \s =318 GeV
=2 LEPTO rec 2 2 = LEPTO rec 2 2
© —— ARIADNE rec S 0> 5GeV © 0.4F —— ARIADNE rec S ook "> 5GeV
O [y - ARIADNE non-diff rec | QO py<5GeV o |\ - ARIADNE non-diff rec | © py<5GeV
o ) 15<n<2 o ) 15<n<2
0.2+ p,>0.1GeV p,>0.1GeV p,>0.1GeV I p,>0.1GeV
no |An| cut 0.1 0.2 no |An| cut no |An| cut

rec c {2}

-0.2r

Nrec Nrec

« Neither model simultaneously describes both ¢, and c,.
« Ariadne describes c, reasonably well, while Lepto works better for c..
* The deviations from MC are basically at the same level with the jet triggers. 6



Control plot figure 4
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Control plot figure 5
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Outlook and next steps

Although jet triggers will be used to obtain an enriched PHP data sample, the
correlations within jets produce strong “unwanted” contributions to two-particle
correlation functions.

We are looking for hints of multiparticle correlations indicative of the
hydrodynamic collective behavior seen in heavy-ion collisions. If they are
present in ep, they will likely be small.

Investigate further PHP event selection techniques within the jet-triggered event
sample. E-Pz, offline jet energy thresholds, other offline quantities...

Perhaps a special set of event selection techniques can reduce the strength of
jet correlations while still providing a rich PHP data sample.
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Figure 6
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Figure 8
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Figure 9
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Figure 10
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Figure 11
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