

Measurement of azimuthal decorrelation angle between the leading jet and the scattered lepton in deep inelastic scattering at HERA (first preliminary addition presentation)

I.Pidhurskyi¹, M.Shchedrolosiev¹, J.Nam², A.Quintero², B. Surrow² ¹Taras Shevchenko National University of Kyiv, ²Temple University

19 Feb 2020

- 1. Brief introduction
- 2. Initial preliminary results
- 3. Event selection
- 4. Unfolding procedure
- 5. Systematics
- 6. Summary
- 7. References
- 8. Backup

We present preliminary results of the azimuthal decorrelation angle between the leading jet and scattered lepton in deep inelastic scattering. Azimuthal angular decorrelation has been proposed to study the Q² dependence of the evolution of the transverse momentum distributions (TMDs) and understand the small x region, providing unique insight to nucleon structure with an electronion collider. Previous decorrelation measurements of two jets have been performed in proton collisions at very high transverse momentum; these measurements are well described by perturbative QCD at next-to-leading order. The presented measurements were obtained by the ZEUS experiment during the HERA II data-taking period. The analysis uses e⁻p and e⁺p data corresponding to integrated luminosities of 330 pb⁻¹. The azimuthal decorrelation angle obtained in these studies shows good agreement with predictions from QCD calculations; however, there are parts of the phase space for which deviations of up to 40% are observed. Dedicated theoretical predictions are to be tested in the future.

Introduction

Azimuthal angular decorrelation angle ($\Delta \phi$) of two jets, have been studies in hadron collisions [1-3].

- Study parton radiation effects.
- Test pQCD and MC generators.
- Search for new physics.

Introduction

Azimuthal angular decorrelation angle ($\Delta \phi$) of two jets, have been studies in hadron collisions [1-3].

- Study parton radiation effects.
- Test pQCD and MC generators.
- Search for new physics.

Motivation

- Study parton radiation effects.
- Test pQCD and MC generators.
- Search for new physics.

Initial preliminary results

- A first set of preliminary plots were presented as poster at the EIC users meeting 2019 and talk at American Physical Society – Division of Nuclear Physics 2019.
- Only detector level measurements were approved as preliminary.
- No cross section results were presented.
- Previous approach for cross section calculation was using bin by bin unfolding to hadron level, but contamination (bin migration) was a problem.
- The previous preliminary MC sample did not include diffraction processes.

Initial preliminary plots

Official

6

Official

Official

Additional preliminary results

- The goal is to present cross section measurements (new additions) at DIS 2020.
- Using TUnfold package [6] to unfold the measurements to hadron level.
- Including diffraction processes in the MC sample.
- Minor modifications to the event selection cuts: 45 GeV < E p_z, before was 35 GeV.
- Using the same |eta| < 1 cuts as before.

Event selection

Data:

```
040506e ~189 pb<sup>-1</sup>, 0607p ~143 pb<sup>-1</sup>
```

MC:

ari_incl_nc_DIS_lowQ2_040506e ari_incl_nc_DIS_lowQ2_0607p

Phase Space:

 $10 < Q^2 < 350 \text{ GeV}^2$ $y_{el} < 0.7 \&\& y_{jb} > 0.04$

Cleaning cuts:

-40 < Zvtx/cm < 40 $45 \text{ GeV} < E - p_z < 65 \text{ GeV} \text{ (both Cal}$ and Zufo) $Cal_pt / sqrt(Cal_et) < 2.5$

Electron cuts:

10 GeV < Energy (Siecorr) 140° < Theta < 180° Electron position sqrt($x^2 + y^2$) > 20.0 Sienin[0] > 0.1*(Siein[0] +Sienin[0]) (energy in cone) Chimney cut Siprob[0], the lepton with highest prob (> 0.9)

Triggers: SPP02 (Tltw[2] & (1 << 1)) for 0405e SPP09 (Tltw[2] & (1 << 8)) for 06e and 0607p

Jet selection: $E_T > 2.5 \text{ GeV } \& P_T < 30$ |eta| < 1.0Using "Kt_etjet_b[0]" (massive), the leading jet only

Event selection for true MC

Data:

040506e ~189 pb⁻¹, 0607p ~143 pb⁻¹

MC:

ari_incl_nc_DIS_lowQ2_040506e ari_incl_nc_DIS_lowQ2_0607p

Phase Space:

10 < Q² < 350 GeV² y_{el} < 0.95 && y_{jb} > 0.04 0.04 < y < 0.95

Cleaning cuts:

-40 < Zvtx/cm < 40 45 GeV < E - p_z < 65 GeV (both Cal and Zufo) Cal_pt / sqrt(Cal_et) < 2.5

Electron cuts:

10 GeV < Siecorr Mc_pfsl[3] 140° < Theta < 180° Electron position sqrt($x^2 + y^2$) > 20.0 Sienin[0] > 0.1*(Siein[0] +Sienin[0]) *(energy in cone) Chimney cut Siprob[0], the lepton with highest prob (>0.9).

Triggers: SPP02 (Tltw[2] & (1 << 1)) for 0405e SPP09 (Tltw[2] & (1 << 8)) for 06e and 0607p

Jet selection: E_T > 2.5 GeV && P_T < 30 |eta| < 1.0 Using "MCHMJets" (massive), the leading jet only

Unfolding procedure

- Unfolding in 1-D was performed with default parameters of the TUnfold package.
- Previous studies by Ivan to optimize unfolding parameters did not show any improvement.
- The binning is $\pi/16$, eight bins for all the p_{T} , Q^{2} and jet multiplicity bins.
- Unfolding is done individually for each bin combination studied.
- No reweighting of the MC was done.

Hadron vs detector $\Delta \phi$

Systematic studies

The systematics studied come from the procedure established for the Prompt Photon analyses [7]:

- The energy scale of the jets was varied by ±4% for jets with E_{jet} < 10 GeV and ±2.5% for larger energies.
- The energy scale of the scattered lepton was varied by 2%.
- The uncertainty due to the lepton selection cuts was estimated by varying the values of the cuts within the resolution of each variable (Not shown in this study*).
- Systematics related to MC generators (Not shown in this study).

The hadron-detector correlation matrix of each systematics study can be applied to the TUnfold package, and the total uncertainty is the squared sum of each systematic and the statistical error.

*Prompt photon studies suggest all other sources of systematics were found negligible.

¢₽p

 $d\sigma_{\text{dijet}}$

 $1/\sigma_{dijet}$

Both statistical and systematics uncertainties are very small.

Test

Summary

- Perform decorrelation measurements of DIS lepton with leading jet, similar to Tevatron, CMS and Atlas.
- Presented results for different p_T , Q^2 and jet multiplicity, showing similar behavior as protonproton measurements.
- Fair to good matching between data and MC at hadron level for angles greater than $2\pi/3$.
- Systematic uncertainties studied are small.
- Accepted abstract for DIS 2020 in March.

References

Phys. Rev. Lett. 94, 221801 (2005). D0
Phys. Rev. Lett. 106, 122003 (2011). CMS
Phys. Rev. Lett. 106, 172002 (2011). Atlas
Phys. Rev. D 92, 094007 (2015). Feng Yuan
Phys. Rev. Lett. 122, 192003 (2019). F. Yuan
JINST 7 (2012) T10003 [arXiv:1205.6201] S. Schmitt
Phys. Lett. B 715 (2012) 88 [arXiv:1206.2270] ZEUS Prompt Photons
Eur. Phys. J. C 76:536 (2016). CMS
Eur. Phys. J. C 78:566 (2018). CMS

Code

- Location: /nfs/dust/zeus/group/pidhii/jets/runner
- There is a README.txt in that directory where that shows how to use it.