Short About PROFFIT

Prepared by Albert for the MC meeting in Karlsruhe, 4/12-2009

About PROFFIT

- Based on the same principle as PROFESSOR.
- Originally developed for fitting uPDFs
- Written in Fortran reads hbook-files –
 Several HERA analyses good for fitting (u)PDF exist already coded in HZTOOL
- Singular Value Decomposition used to determine the polynomial describing the MC grid. If few parameters are fitted a 4th order polynomial can be used to described the MC grid. However, while a 3rd order poly is a clear improvement over 2nd order, the 4th order do usually nor improve the Chi2(MC Poly).
- The fit of the MC parameters (in the polynomial) to the data is done by Minuit (MIGRAD)
- Currently equidistant MC grids has been used (PROFESSOR use randomized grids(?))

Error treatment in PROFFIT

- The statistical errors of the MC is propagated to the coefficients of the polynomial. A co-variance matrix for the coefficients are calculated.
- The CTEQ error calculation is used to take the correlated errors in the data into consideration. Basically the Chi2 is differently calculated.
- •In the fit of the MC parameters to the data the uncorrelated errors and the different correlated errors are treated separately according to:

$$\chi^2 = \sum \frac{(X_{Data} - X_{Polynomial})^2}{\alpha^2} - \sum_j \sum_{j'} B_j (A^{-1})_{jj'} B_{j'}$$

 $lpha^2=$ Sum of uncorrelated errors (data and polynomial)

$$\Sigma_{j}\Sigma_{j'}B_{j}(A^{-1})_{jj'}B_{j'}= \text{Term related to the correlated systematic errors (vector B), and their correlations (matrix A)}$$

(From the CTEQ group, hep/ph/0101051, code from Federico von Samson-Himmelstjerna)

Fitting the x dependence to the proton structure - F2

$$xA_0(x, k_T, \bar{q}_0) = N \cdot x^{-B} \cdot (1 - x)^C \cdot exp(-\frac{(k_T - \mu)^2}{2\sigma^2})$$

Fitting F2 in the range x < 0.005, Q2>4.5, gives:

<u>Minimum</u>

N = 0.807 + -0.016

B = 0.029 + / - 0.004

Chi2/ndf=1.2

This is a good fit which reconstructs the parameter values in an already existing uPDF tuned to F2 within the same kinematic range... (Good validation of the method.)

Some fitting results

However if we open up the phase space and fit all the F2 data points in the measurement, we obtain the minimum:

$$xA_0(x, k_T, \bar{q}_0) = N \cdot x^{-B} \cdot (1 - x)^C \cdot exp(-\frac{(k_T - \mu)^2}{2\sigma^2})$$

Minimum

Inspired by the CTEQ people we added an extra factor in the starting distribution

$$xA_0(x, k_T, \bar{q}_0) = N \cdot x^{-B} \cdot (1 - x)^C \cdot (1 - Dx) \cdot G(k_T)$$

Fitting F2 over the full range in x gives a slightly different gluon then before.

uPDF allowed to be more pronounced at low and high x:

Minimum

N = 0.487 + -0.007

B = 0.097 + /- 0.003

D = -5.10 + / -0.35

Chi2/ndf = 2.8

(Before: Chi2/ndf = 5.4)

