# Introduction to machine learning & deep learning

- What ML is / isn't
- How ML works
- Where ML can be useful



#### **Iftach Sadeh**

#### June 2020

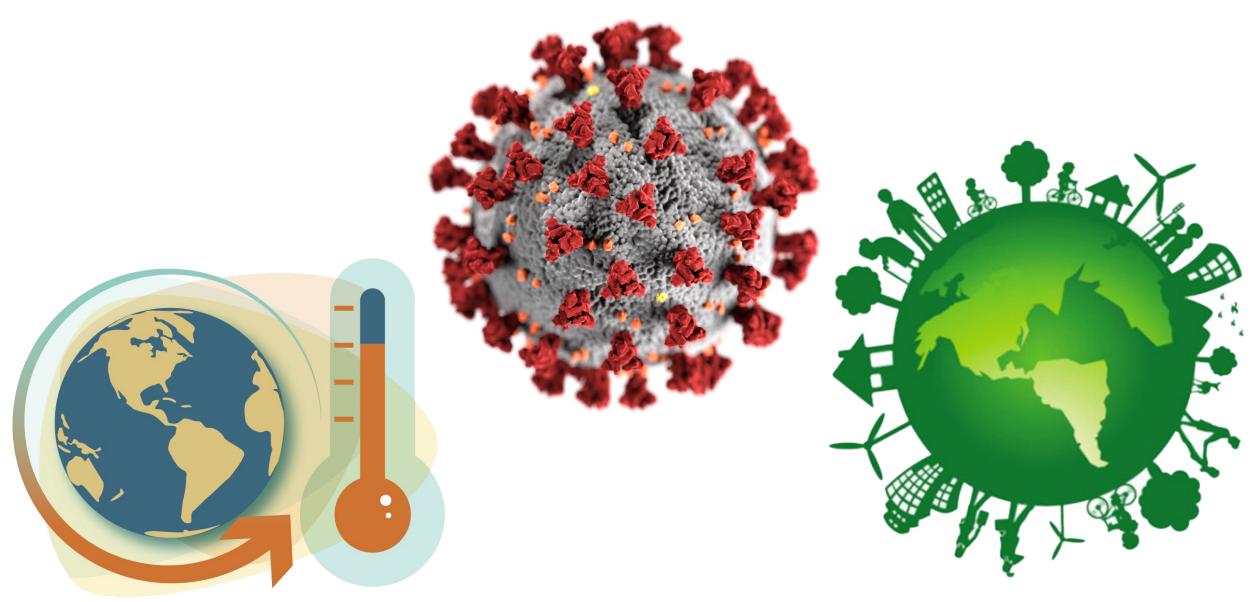
iftach.sadeh@desy.de

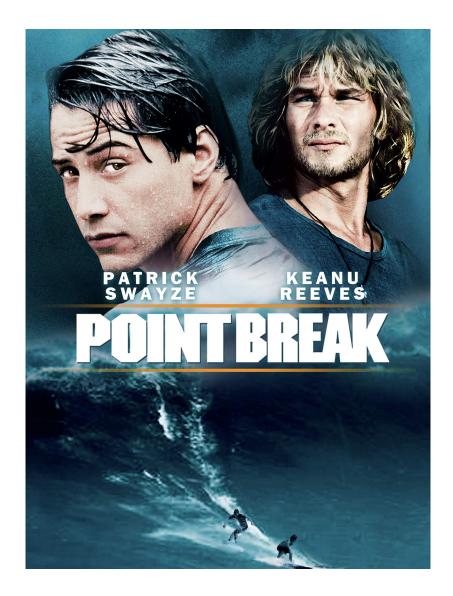
- Largely derived from:
  - University of Toronto CSC411 Introduction to Machine Learning (Fall 2016).
    See: <a href="http://www.cs.toronto.edu/~urtasun/courses/CSC411\_Fall16/CSC411\_Fall16.html">http://www.cs.toronto.edu/~urtasun/courses/CSC411\_Fall16/CSC411\_Fall16.html</a>



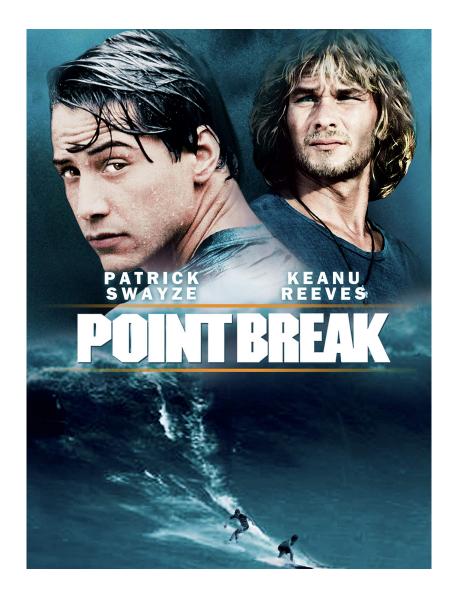


#### **Modern challenges**





- Undercover FBI agent
- Gang of surfers / bank robbers
- "Complex relationship" with Patrick Swayze



#### • Undercover FBI agent

- Gang of surfers / bank robbers
- "Complex relationship" with Patrick Swayze



- Undercover agent
- Keanu crossover





- Undercover FBI agent
- Gang of surfers / bank robbers
- "Complex relationship" with Patrick Swayze



- Action at sea
- Big storm



- Undercover FBI agent
- Gang of surfers / bank robbers
- "Complex relationship" with Patrick Swayze



- Emotional stakes
- Drowning



#### • Superficial correlations:

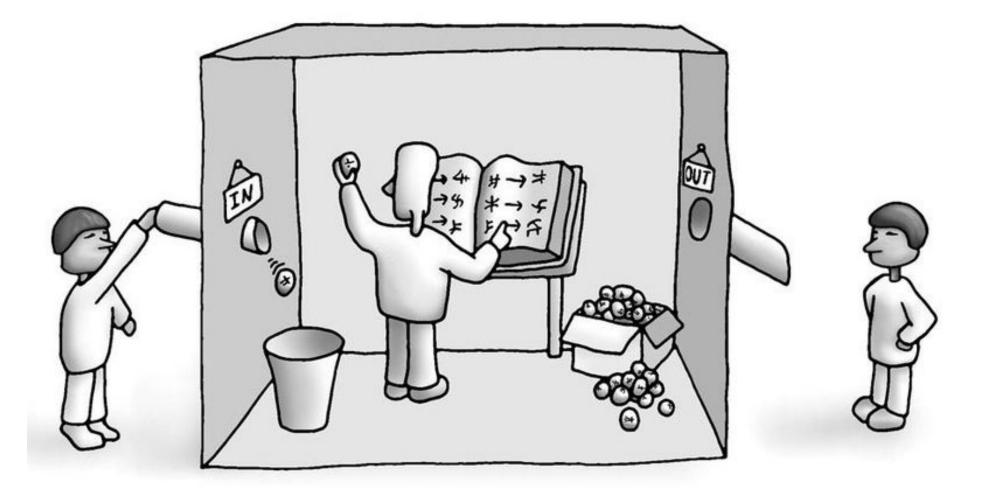
- Anything with Keanu Reeves
- Plot specifics undercover cop; heist; criminal gangs; sports; action at sea; social clubs ...
- Critical- / viewer-analysis (code words):
  - Directing ; cinematography ; sound track ...
- Cultural / contextual significance:
  - 90s movies I only watch "ironically"
- User surveillance:
  - What time of day this is?
  - What did I have for dinner?
  - What did I Google two weeks ago?

#### **Enters machine learning...**

- How can we solve a specific problem?
  - Program that encodes a set of rules that are useful to solve the problem.
  - Usually difficult to specify those rules, e.g., locate the cat in the image?
- On the other hand learning systems are not directly programmed to solve a problem. Instead, develop own program based on:
  - Examples of how they should behave.
  - From trial-and-error experience trying to solve the problem.
- Different than standard computer science:
  - Want to implement unknown function, only have (training) sample input/output.
  - Learning  $\rightarrow$  incorporating information from the training examples into the system.

#### The Chinese room thought experiment

• John Searle, "Minds, Brains, and Programs" (1980).



#### **Our robot overlords**

#### **Artificial General Intelligence**

#### **Narrow Al**



- "Strong AI" >= human intelligence
- Ability to reason, solve puzzles, make judgments, plan, learn, and communicate
- Desire to bring about judgement day ?



• "Weak AI" limited to a specific or narrow area



# **Types of machine learning**

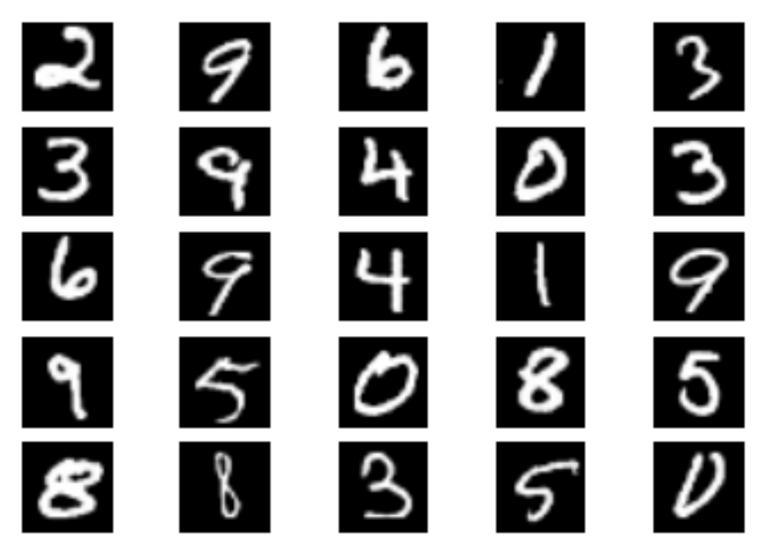




# **Types of ML**

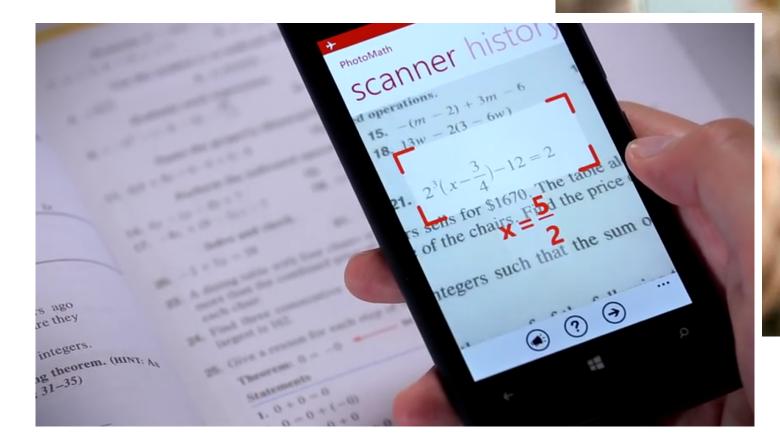
- Classification: determine which discrete category the example is
- Recognising patterns: speech recognition, facial identity, etc
- Recognising anomalies: unusual sequences of credit card transactions, panic situation at an airport
- Recommender Systems: noisy data, commercial pay-off (e.g., Amazon, Netflix).
- Information retrieval: find documents or images with similar content
- Computer vision: detection, segmentation, depth estimation, optical flow, etc
- Robotics: perception, planning, etc
- Learning to play games
- Spam filtering, fraud detection: the enemy adapts so we must adapt too
- Many more...

#### **Classification**



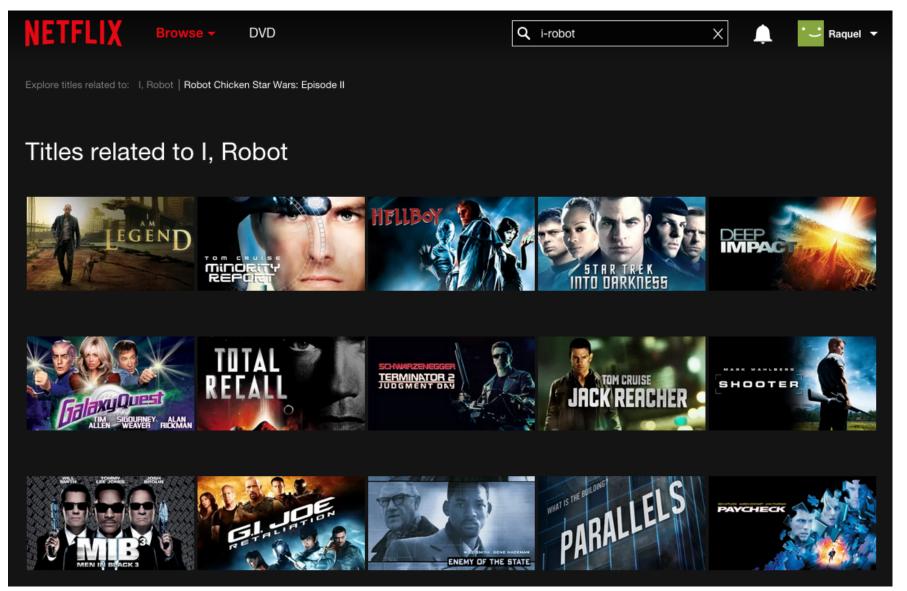
What digit is this?

#### **Pattern recognition**



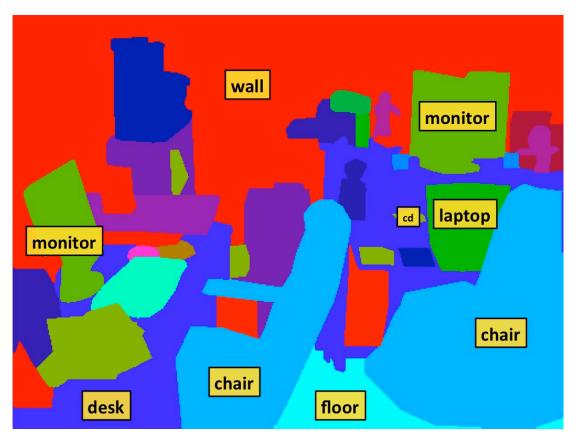


#### **Recommendation system**



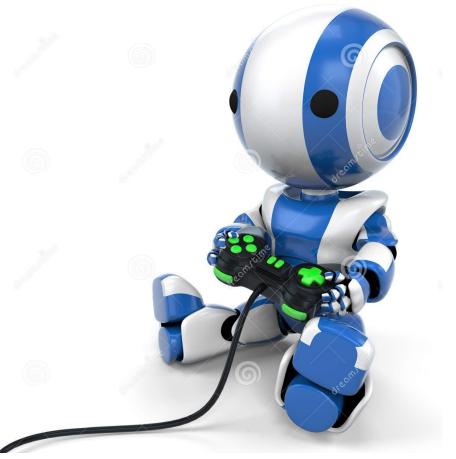
#### **Computer vision**

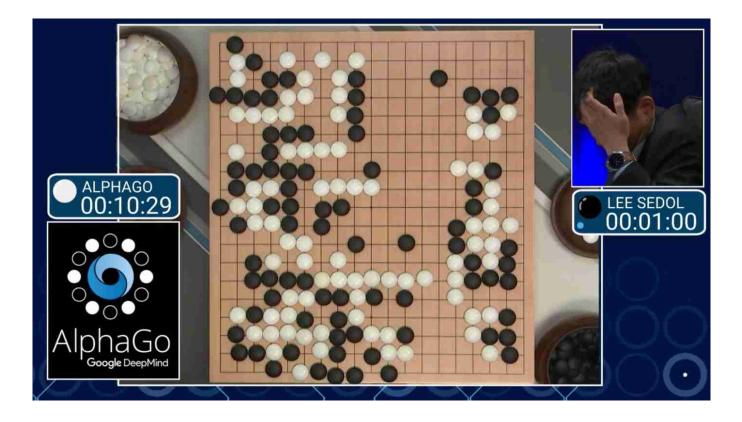




#### **Playing games**

- Learning to play Super Mario: <u>https://www.youtube.com/watch?v=wfL4L\_I4U9A</u>
- Learning to play Alpha Go:





# How does it actually work?



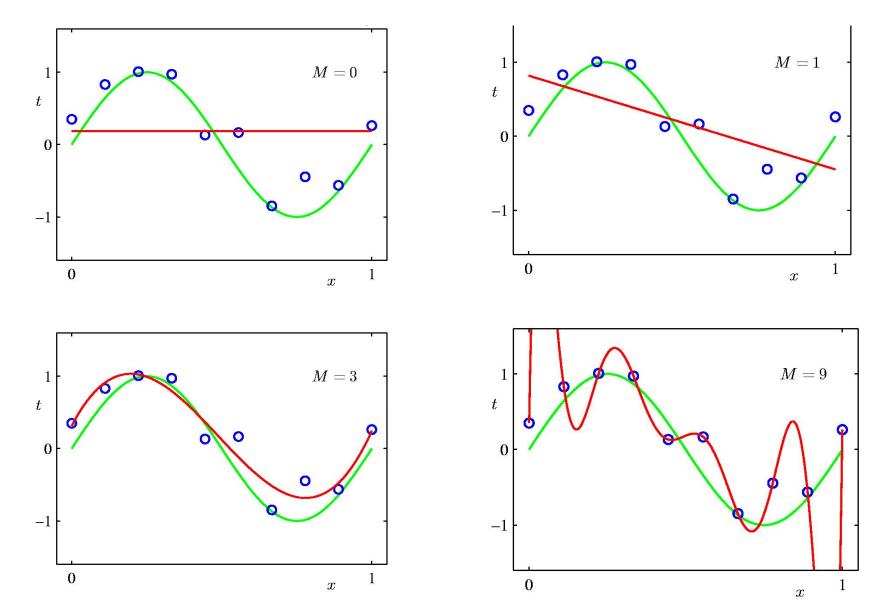
#### **ML techniques**

- **Supervised**: correct output known for each training example Learn to predict output when given an input vector:
  - Classification: 1-of-N output (speech recognition, object recognition, medical diagnosis)
  - Regression: real-valued output (predicting market prices, customer rating)
- Unsupervised learning:
  - Create an internal representation of the input, capturing regularities/structure in data
  - Examples: form clusters; extract features → How do we know if a representation is good?
- Reinforcement learning:
  - Learn action to maximize payoff
  - Not much information in a payoff signal
  - Payoff is often delayed

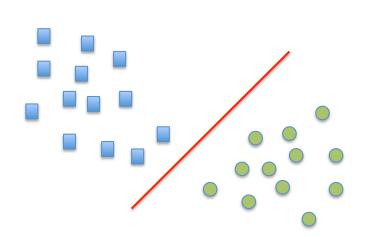
#### **Components of supervised learning**

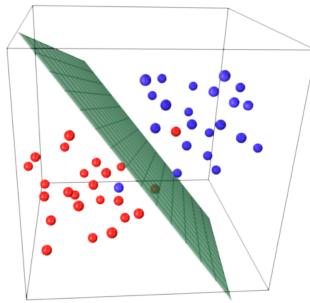
- Continuous outputs (regression), e.g., a rating, # of followers, house price, or "integer" classes (classification), e.g., animal breed.
- What do I need in order to predict these outputs?
  - Features inputs to the estimator & labels known outputs.
  - **Training examples**, many input sets for which the output is known (e.g., many movies with ratings)
  - A model, a function that represents the relationship between inputs / outputs
  - A loss / cost function, which tells us how well our model approximates the training examples
  - **Optimization**, a way of finding the parameters of our model that minimizes the loss function

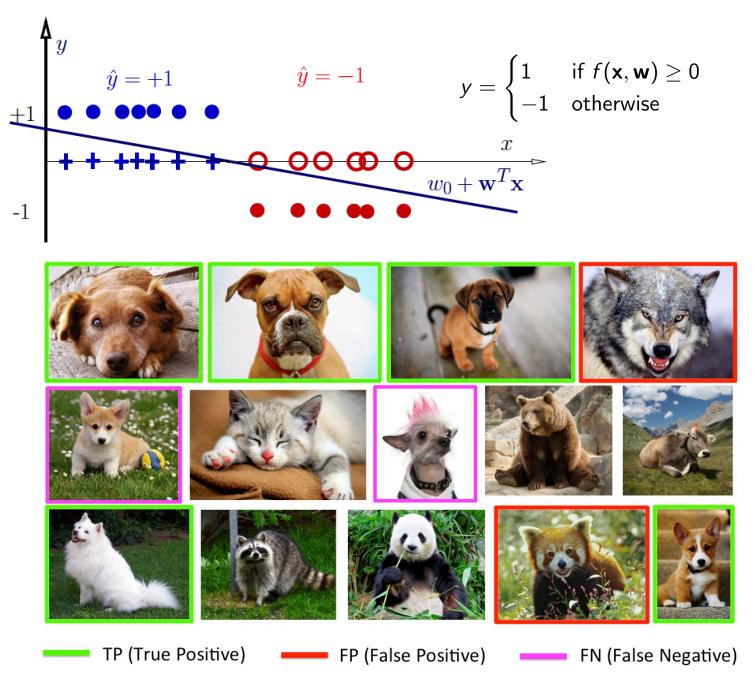
#### Regression



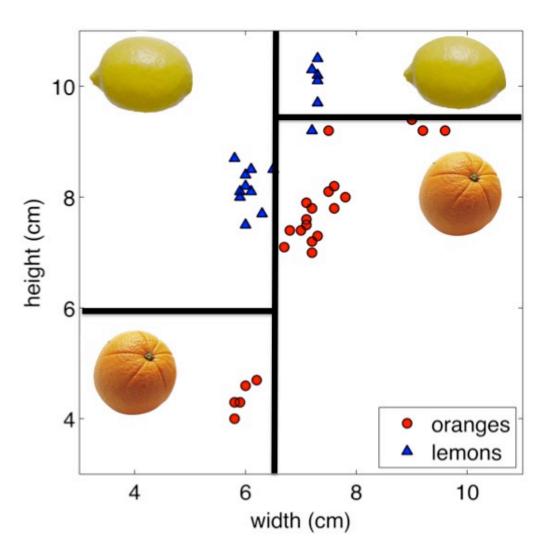
#### **Classification**

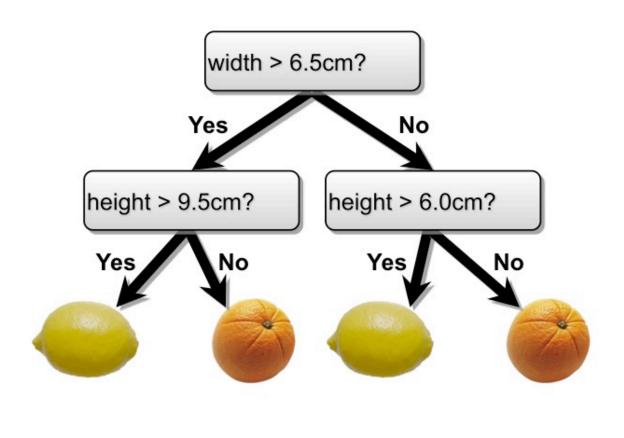




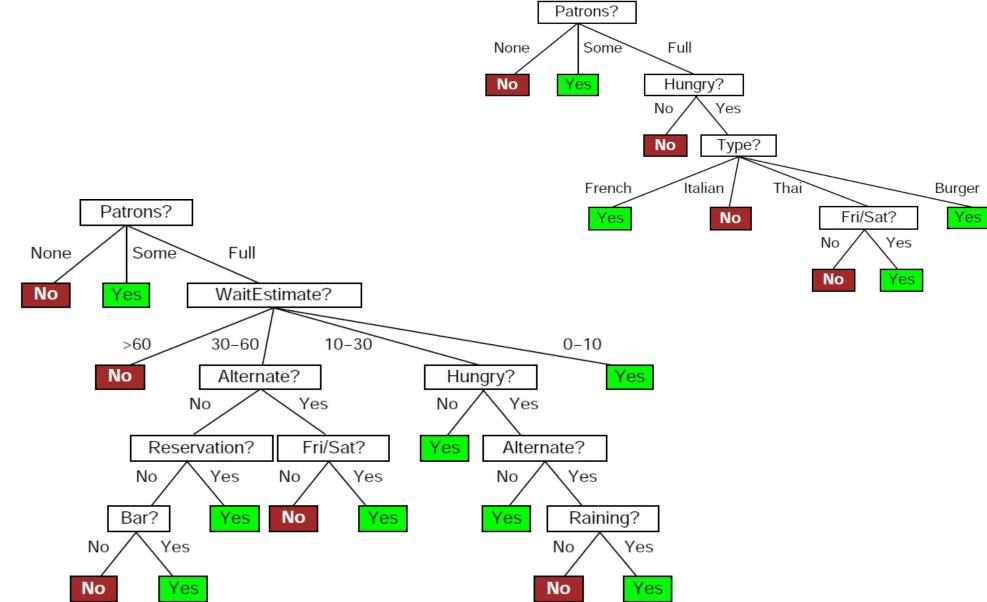


#### **Decision Trees**



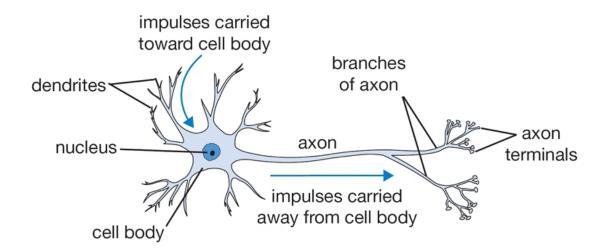


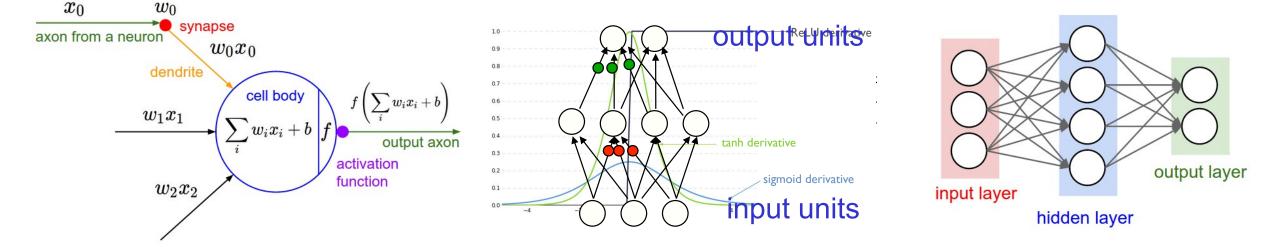
#### Which tree is better?



## **Artificial neural networks (ANN)**

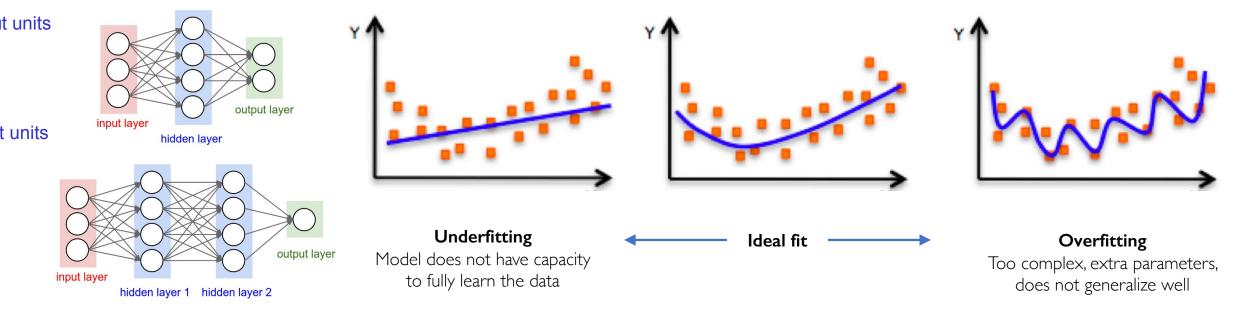
- Non-linear discriminative classifier that utilises functions of input variables
- Use a large number of simpler functions → for fixed functions (Gaussian, sigmoid, polynomial basis functions), optimisation involves linear combinations of (fixed functions of) the inputs





## **Overfitting**

- Training data contain information about the true patterns in the mapping from input to output
- But they also contain statistical & systematic noise:
  - The target values may be unreliable
  - There are statistical fluctuations (there will be accidental patterns)
- Fit the model -> end up predicting both true and spurious properties



# **Deep learning**



## Why deep learning?



# **Deep learning**

#### Challenges:

- Phase-space: huge number of classes, with lots of intra-class variation
- Segmentation: real scenes are cluttered
- Invariances: variations (or fluctuations) do not affect nominal shape
- Deformations: natural shape classes allow variations (faces, letters, chairs)
- A huge amount of computation









#### Deepfake





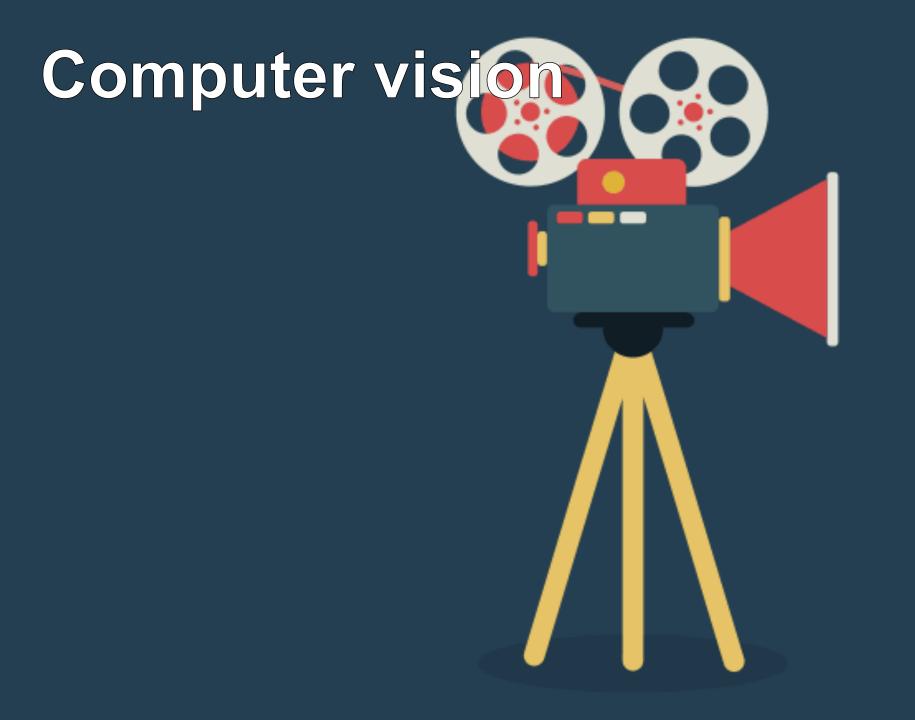




#### **Text generation**

| $\leftarrow \rightarrow C \land \land$                      |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| See now a modern neural network completes your text. Type a custom                                                                                          | T. |
| snippet or try one of the examples. Learn more below.                                                                                                       |    |
| Follow @AdamDanielKing for updates and other demos like this one.                                                                                           |    |
| Custom prompt                                                                                                                                               | L  |
|                                                                                                                                                             | L  |
| What if Elon Musk                                                                                                                                           | l  |
|                                                                                                                                                             | l  |
|                                                                                                                                                             | l  |
|                                                                                                                                                             | l  |
| GENERATE ANOTHER                                                                                                                                            | l  |
|                                                                                                                                                             | l  |
| Completion                                                                                                                                                  | l  |
| What if Elon Musk doesn't take flight in 2017?"                                                                                                             | l  |
|                                                                                                                                                             | L  |
| And the answer's simple: If there is a future for humans on Mars — and that's                                                                               | L  |
| one of the possible alternatives of NASA's long-term mission beyond human                                                                                   | L  |
| exploration — then it will still come at great cost from political and social<br>perspectives (see here for the long list). But Musk's business model is an |    |
| interesting one, based on the idea of building a giant fleet. He's doing it in very                                                                         |    |
| simple ways: He's building his rockets as low as they can go, then sending                                                                                  |    |
| them off to orbit Earth, and then delivering them back to space from ground                                                                                 |    |
| stations, at a cost that is lower than even that of traditional manned                                                                                      |    |
| spaceflight. His rockets are so small they're not required to carry a crew, just                                                                            |    |
| passengers who are part of a launch network connected to a base on land.                                                                                    |    |
| His business can be sold to investors at less than 10 billion dollars. When                                                                                 |    |
| Musk gets to Mars, he wants to build a fleet at least as massive as the current                                                                             |    |
| NASA fleet – to send humans to the red planet – to start mining asteroids, as                                                                               |    |
| well as sending back water, nutrients, fuel, and whatever else might eventually be needed to sustain human existence.                                       |    |
| That vision is being challenged as a result of the rapid growth of the solar                                                                                |    |
| power industry. Solar power is growing rapidly, taking more and more market                                                                                 | 1  |
| share from traditional coal                                                                                                                                 |    |

#### https://talktotransformer.com/



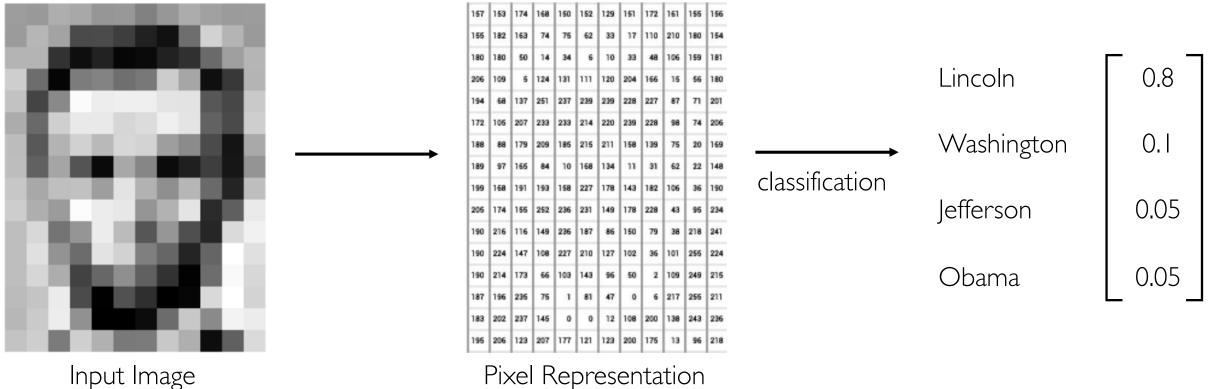
#### **Computer vision**

| 1  | 157 | 153 | 174 | 168 | 150 | 152 | 129 | 151 | 172 | 161 | 155 | 156 | 157 | 153 | 174 | 168 | 150 | 152 | 129 | 151 | 172 | 16  | 51 |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
|    | 155 | 182 | 163 | 74  | 75  | 62  | 33  | 17  | 110 | 210 | 180 | 154 | 155 | 182 | 163 | 74  | 75  | 62  | 33  | 17  | 110 | 210 |    |
| 1  | 180 | 180 | 50  | 14  | 84  | 6   | 10  | 88  | 48  | 105 | 159 | 181 | 180 | 180 | 50  | 14  | 34  | 6   | 10  | 33  | 48  | 106 | ł  |
| 2  | 206 | 109 | 5   | 124 | 191 | 111 | 120 | 204 | 166 | 15  | 56  | 180 | 206 | 109 | 5   | 124 | 131 | 111 | 120 | 204 | 166 | 15  |    |
| 1  | 194 | 68  | 137 | 251 | 237 | 239 | 239 | 228 | 227 | 87  | 71  | 201 | 194 | 68  | 137 | 251 | 237 | 239 | 239 | 228 | 227 | 87  |    |
| 1  | 172 | 105 | 207 | 233 | 233 | 214 | 220 | 239 | 228 | 98  | 74  | 206 | 172 | 105 | 207 | 233 | 233 | 214 | 220 | 239 | 228 | 98  |    |
| 1  | 188 | 68  | 179 | 209 | 185 | 215 | 211 | 158 | 139 | 75  | 20  | 169 | 188 | 88  | 179 | 209 | 185 | 215 | 211 | 158 | 139 | 75  |    |
| 1  | 189 | 97  | 165 | 84  | 10  | 168 | 134 | 11  | 51  | 62  | 22  | 148 | 189 | 97  | 165 | 84  | 10  | 168 | 134 | 11  | 31  | 62  |    |
| 11 | 199 | 168 | 191 | 193 | 158 | 227 | 178 | 143 | 182 | 105 | 36  | 190 | 199 | 168 | 191 | 193 | 158 | 227 | 178 | 143 | 182 | 106 |    |
| 2  | 205 | 174 | 155 | 252 | 236 | 231 | 149 | 178 | 228 | 43  | 95  | 234 | 205 | 174 | 155 | 252 | 236 | 231 | 149 | 178 | 228 | 4   | 3  |
| 11 | 190 | 216 | 116 | 149 | 236 | 187 | 85  | 150 | 79  | 38  | 218 | 241 | 190 | 216 | 116 | 149 | 236 | 187 | 86  | 150 | 79  | 3   | 8  |
| 11 | 190 | 224 | 147 | 108 | 227 | 210 | 127 | 102 | 36  | 101 | 255 | 224 | 190 | 224 | 147 | 108 | 227 | 210 | 127 | 102 | 36  | 10  | 1  |
| 11 | 190 | 214 | 173 | 66  | 103 | 143 | 95  | 50  | 2   | 109 | 249 | 215 | 190 | 214 | 173 | 66  | 103 | 143 | 96  | 50  | 2   | 10  | 9  |
| 87 |     | 196 | 235 | 75  | 1   | 81  | 47  | 0   | 6   | 217 | 255 | 211 | 187 | 196 | 235 | 75  | 1   | 81  | 47  | 0   | 6   | 217 | 7  |
| 1  | 183 | 202 | 237 | 145 | 0   | 0   | 12  | 108 | 200 | 138 | 243 | 236 | 183 | 202 | 237 | 145 | 0   | 0   | 12  | 108 | 200 | 13  | 8  |
| 19 | 195 | 206 | 123 | 207 | 177 | 121 | 123 | 200 | 175 | 13  | 96  | 218 | 196 | 206 | 123 | 207 | 177 | 121 | 123 | 200 | 175 | 1   | 3  |

An image is just a matrix of numbers [0,255]! i.e., 1080×1080×3 for an RGB image

What the computer sees

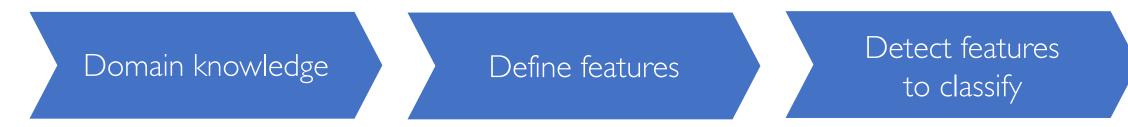
#### **Computer vision**



Input Image

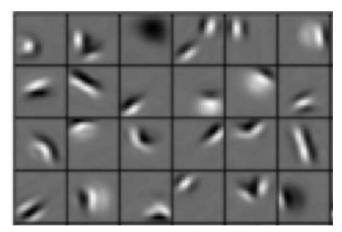
## **Hierarchy of features**

• Try to design features for detection:



• Or ... lean hierarchy of features directly from data:

Low level features



Edges, dark spots

Mid level features



Eyes, ears, nose

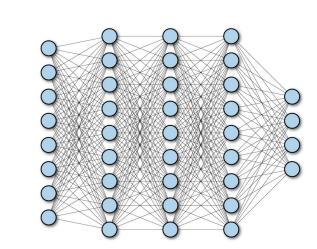
#### High level features



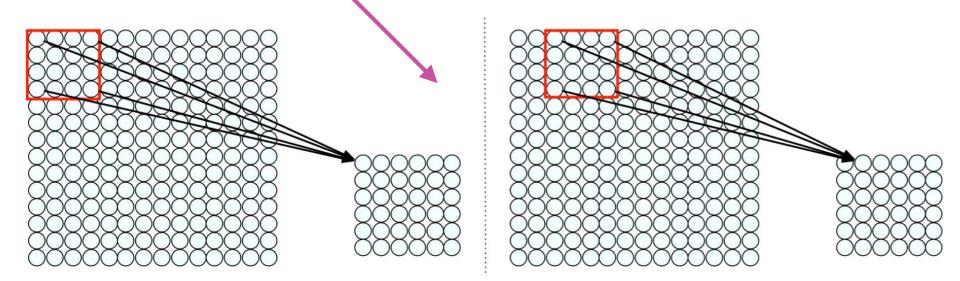
Facial structure

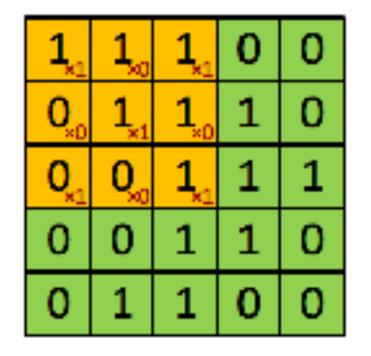
## **Use spatial structure**

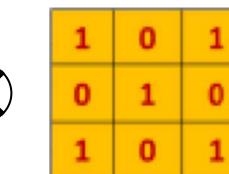
- Apply a set of weights (a filter) to extract local features
- Use multiple filters to extract different features
- Spatially share parameters of each filter
- Example:
  - Filter of size 4x4 : 16 different weights
  - Apply same filter to 4x4 patches (convolution) in input
  - Shift by 2 pixels for next patch



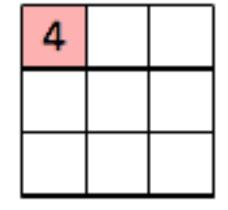
- No spatial info
- Many many parameters

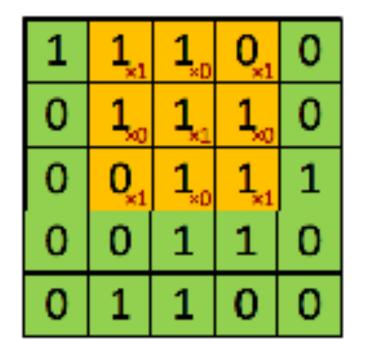






filter



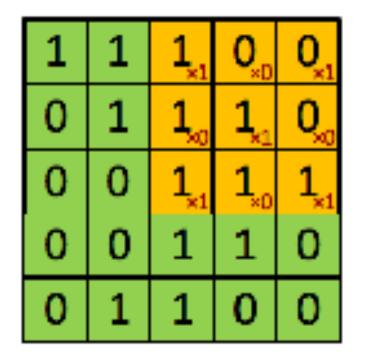




| 1 | 0 | 1 |
|---|---|---|
| 0 | 1 | 0 |
| 1 | 0 | 1 |

filter

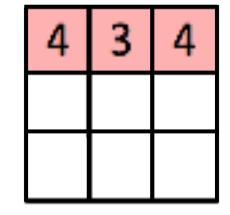
| 4 | 3 |  |
|---|---|--|
|   |   |  |
|   |   |  |

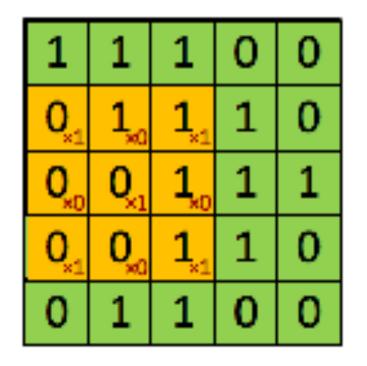




| 1 | 0 | 1 |
|---|---|---|
| 0 | 1 | 0 |
| 1 | 0 | 1 |

filter

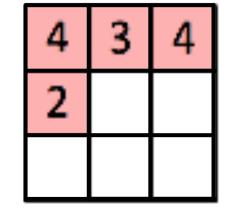


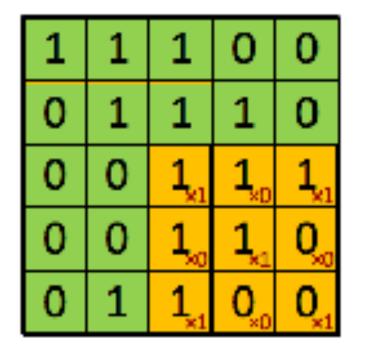


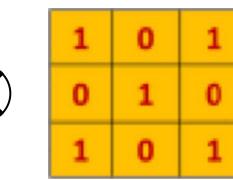


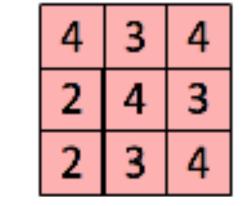
| 1 | 0 | 1 |
|---|---|---|
| 0 | 1 | 0 |
| 1 | 0 | 1 |

filter



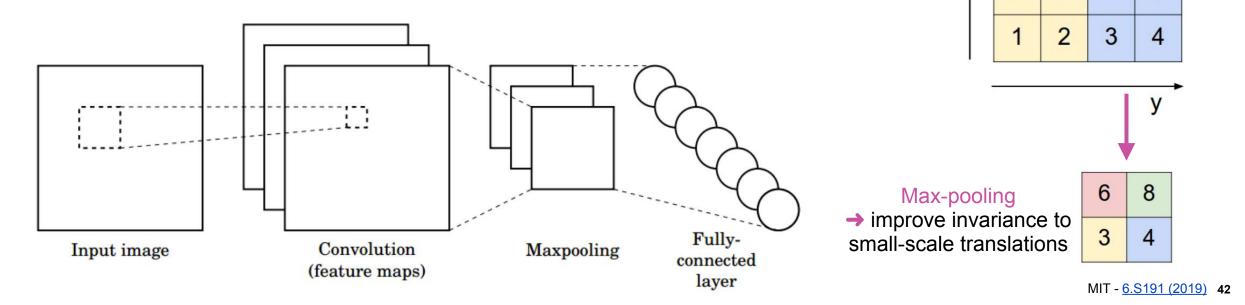






# **CNN components**

- Convolution: Apply filters with learned weights to generate feature maps from images
- Non-linearity: Often ReLU.
- Pooling: Down-sampling operation on feature maps to summarise the presence of features (e.g., averaging or taking the maximum) to increase translational invariance
- Fully connected layers: similar to classical ANN arch.



224x224x64

224

5

3

224

X

112x112x64

112

112

4

8

0

pool

downsampling

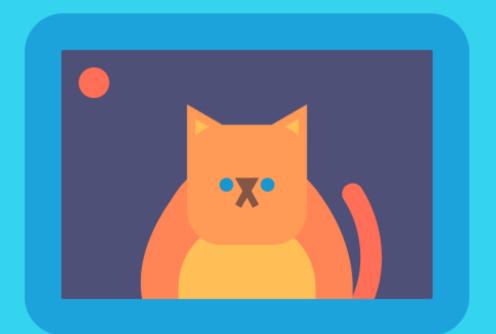
6

2

2

7

# Sequences / time-series analysis

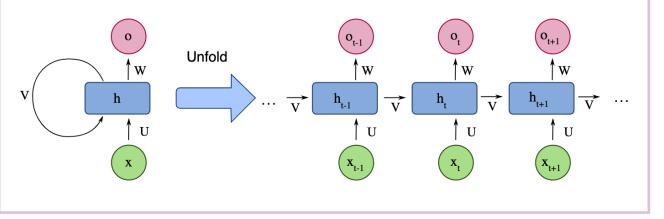


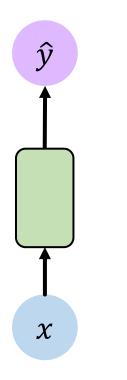


# **Sequences / time-series analysis**

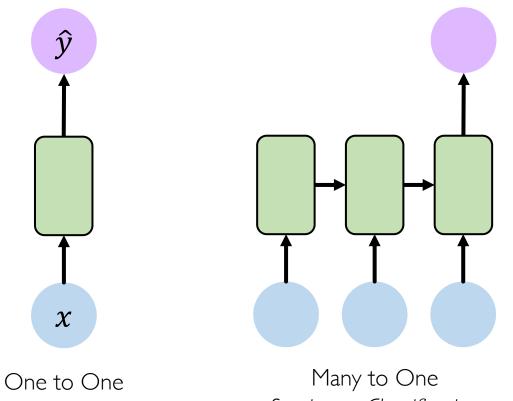
- Can you predict the next word?
- "France is where I grew up, but I now live in Boston. I speak fluent \_\_\_\_."
- Information from the distant past is required for robust predictions...
- In general...
  - Variable-length sequences
  - Track long- & sort-term trends
  - Ordered information
  - Shared parameters across sequences

 → one solution is recurrent neural networks (RNNs) - nodes connected to form a directed graph along a temporal sequence.



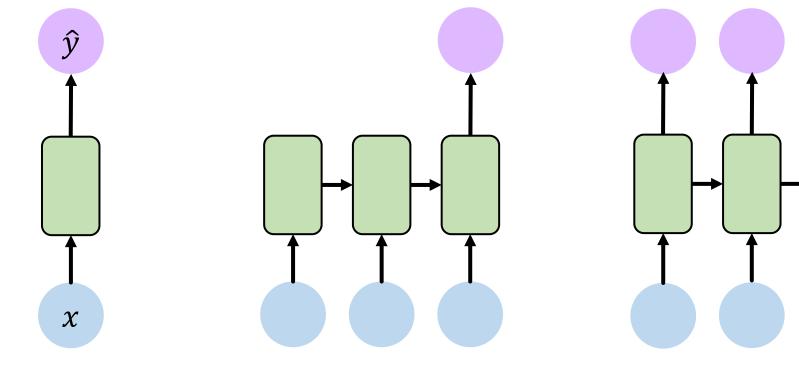


One to One ''Vanilla'' neural network

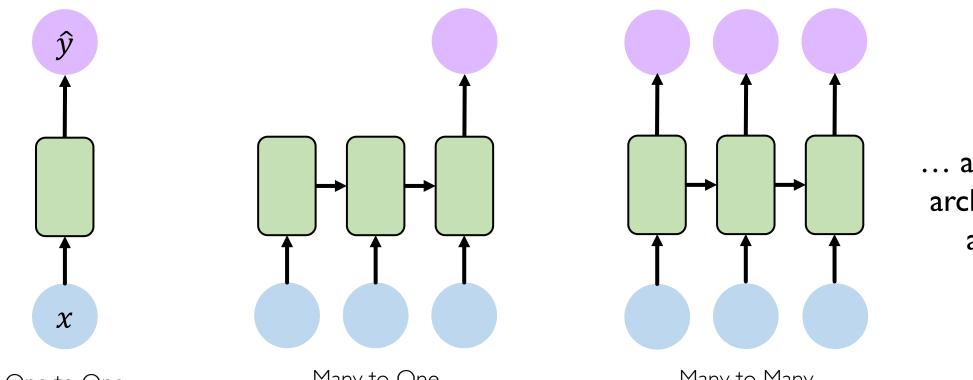


"Vanilla" neural network

Sentiment Classification

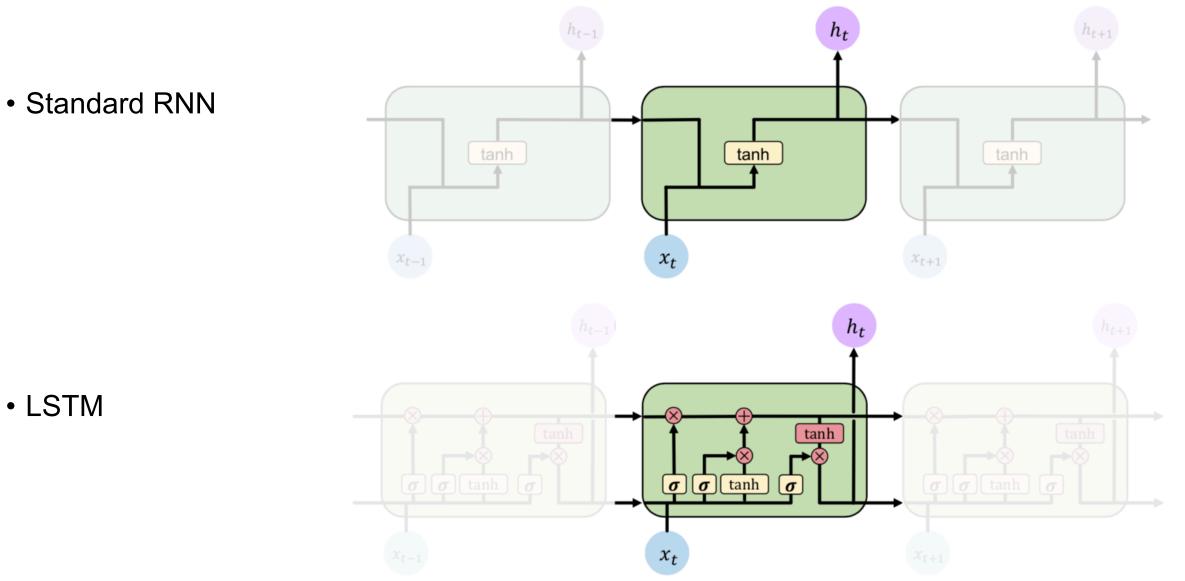


One to One ''Vanilla'' neural network Many to One Sentiment Classification Many to Many Music Generation



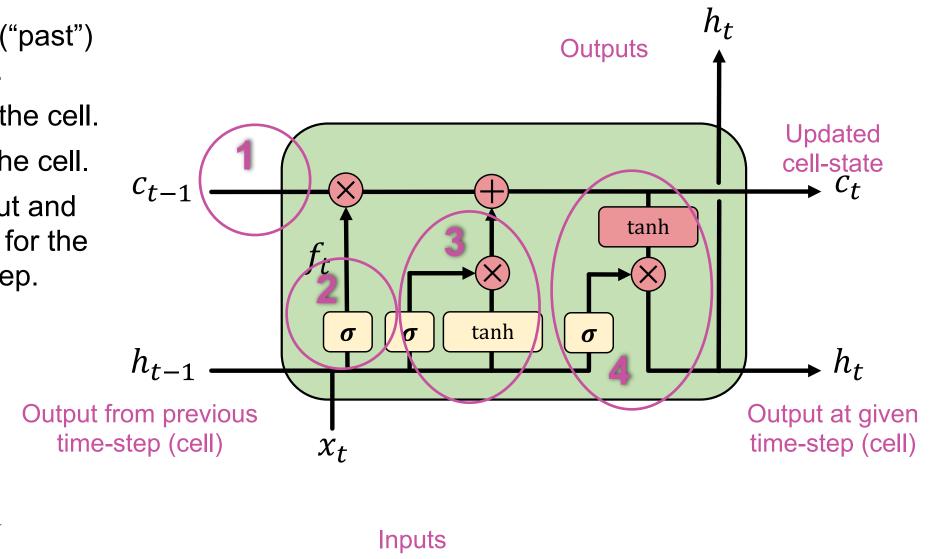
One to One ''Vanilla'' neural network Many to One Sentiment Classification Many to Many Music Generation ... and many other architectures and applications

# Long short term memory (LSTMs)



# Vanishing gradient problem -> Long-short memory units (LSTM)

- 1. Pass-in the previous ("past") state for modification.
- 2. "Forget" a sub-set of the cell.
- 3. Update a sub-set of the cell.
- 4. Derive a filtered output and an updated cell-state for the next ("future") time-step.



Horizontal -> memory

/ertical → right now

# **Reinforcement learning**



See also: <u>http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html</u> ( → Inc. video lectures: <u>https://www.youtube.com/playlist?list=PLbWDNovNB5mqFBgq7i3MY6Ui4zudcvNFJ</u> )

# **Types of learning problems**

#### Supervised Learning

**Data:** (x, y) x is data, y is label

**Goal:** Learn function to map  $x \rightarrow y$ 

#### **Unsupervised Learning**

**Data:** *x x* is data, no labels!

**Goal:** Learn underlying structure

Reinforcement Learning

Data: state-action pairs

**Goal:** Maximize future rewards over many time steps

Apple example:



This thing is an apple.



This thing is like the other thing.

Apple example:



Eat this thing because it will keep you alive.

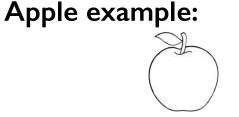
## **Reinforcement learning**

- **Strategy**: find policy of "behaviour" that maximises future rewards, *R*<sub>t</sub>.
- Particularly well-suited to problems that include a long-term versus short-term reward trade-off.
- Balance exploration (of uncharted territory) and exploitation (of current knowledge).

#### **Reinforcement Learning**

**Data:** state-action pairs

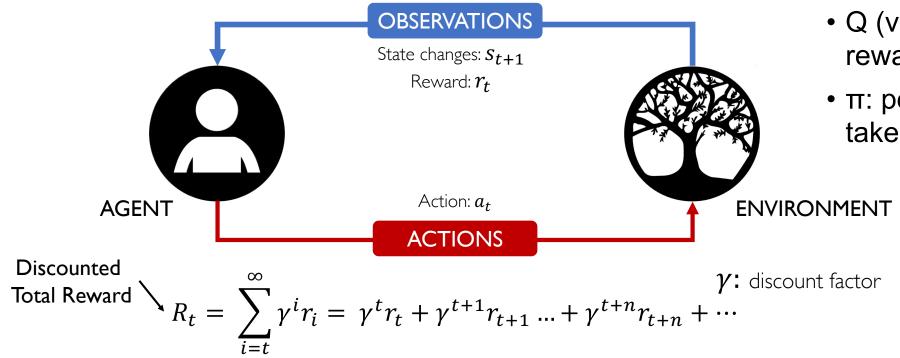
**Goal:** Maximize future rewards over many time steps



Eat this thing because it will keep you alive.

## Agent vs. environment

- Value learning: maximise value function for optimal policy (optimises approximated average) rewards for all state-action pairs.
  - → Works for discrete / small action spaces.
- Policy learning: directly optimise the policy (e.g., with gradient-based methods).
  - → Models continuous action spaces



- *R*<sub>t</sub>: Sum of rewards for time, *t*.
- Q (value function): total future reward (state, *s*, & action, *a*).
- π: policy to infer best action to take

 $Q(s, a) = \mathbb{E}[R_t]$  $\pi^*(s) = \operatorname{argmax} Q(s, a)$ 

# (My personal) important takeaways

# Garbage in -> garbage out

#### • Know your data:

- Use complete datasets
- (For most cases) use representative samples to minimise systematic (sampling) bias
- Transform input variables to reflect expected signals (e.g., use logarithm of energy for PL analyses)
- Normalise inputs for homogenise numerical operations
- Do not add unnecessary / noisy features (or data in general)
- Fold-in known systematics on inputs & outputs to increase robustness

# Garbage in → garbage out

- Keep it simple:
  - Prefer feature-engineering over complex architectures
  - Don't get too excited about bleeding edge technologies
- Cross-check your results:
  - Assume outliers will be catastrophic (can probabilistically be identified)
  - Reweight your training sample / experiment with different loss functions
  - Use control regions to test generalisability (extrapolation is notoriously difficult)

  - Compare with classical methods where possible

# Questions...?

