
Effective use of batch computing and
storage in Zeuthen

A guide to success ;-)

Andreas Haupt – DV –
Data Science Seminar, Zeuthen

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 2

Motivation
● The Computing Centre hosts lots of (expensive) compute/storage resources

– Aim to get the most output and value out of them

● The talk will be divided into two main parts: storage & compute
– Both are closely connected
– Incorrect usage of central resources can badly affect performance & availability

● not just only for you, but for every other user!
● so it helps all of us to avoid bad usage patterns ;-)

● Disclaimer …
– Amount of information is quite huge and was shortened at some points
– In case of missing details, another presentation (one topic, more detailed) could be provided

… what you should take home from this talk

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 3

Overview
● Compute resources

Numbers, numbers, numbers ...

Cluster use case Cores HS06

PAX HPC ~1800 40k

Local farm High Throughput ~3500 70k

Grid farm Grid Computing ~4500 92k

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 4

Overview
● Central storage resources

Numbers, numbers, numbers ...

Storage product Use case capacity / servers Notes

Lustre mass storage with fast
parallel data access
(scratch space)

~2.8PB / 36

dCache data archive, mass
storage with fast parallel
data access

~7.3PB / 100

AFS $HOME, software,
scratch

~260TB / 22

Sync&Share Document share Provided by DESY-HH

Storage

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 6

Central storage systems
● Network-attached storage is supposed to provide:

– Data access on whichever client system you are running your stuff
– Fast, aggregated data throughput by accumulating the power of many storage servers

● However, this flexibility has some drawbacks
– Latency matters!

● metadata i/o operations are comparable slow due to complex operations in background
● open/close ops, recursive find, compiling software!

– File locks are usually only enforced on the same client
– Your notebook ssd will perform significantly better for some usage patterns

● Keep this in mind whenever you are migrating software/workflows to our central compute environment

… some general remarks

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 7

Central storage systems

● Avoid i/o as much as possible
– example: avoid reading the same files again and again

● Avoid too many clients writing into the same directory

● Avoid concurrent writes from multiple clients to the same file
– in many cases the result will not be the expected one ...

● Try to move i/o operations which are affected by latency to local
scratch (/tmp, $TMPDIR)
– Example: untar software in /tmp, compile in /tmp but install to AFS

● In extreme cases: consider usage of ramdisks (/dev/shm)
– but do not forget to clean up afterwards

… even more general advises

Ramdisk Local (/tmp) AFS
0

10

20

30

40

50

60

70

80

90

100

runtime

Extract Linux kernel (>70k files)
Runtime in seconds:
tar -xJf linux-5.6.15.tar.xz

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 8

In case of problems ...
● In case of data access issues (slow ops, errors, etc.) contact uco-zn@desy.de

● Please be as much precise as possible in describing your problem!
– It really helps us identifying the possible source of the problem

● A typical complaint: “My access to cluster is slow!”
– … but what does that mean?
– Therefore here some details we always would like to here from you:

● Which operations do not perform as desired?
● Which files/directories are affected?
● Which client(s) are you using when hitting the problem?
● In case you use many clients: Are all of them affected? Or just some of them? Which ones?

when things go wrong ...

mailto:uco-zn@desy.de

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 9

Getting storage resources
● Please keep in mind that we are not allowed to purchase large amounts of storage “on spec”

– mainly: financial restrictions ...

● Unfortunately, especially for Lustre storage, we are not as flexible in providing new space as we want
– Lustre is not designed to get easily extended once is has been established

● “just put in another machine” does not really work :-(
– We usually establish one Lustre file system per year

● This should cover all the year's demands
– So, we need to know yearly storage demands well in advance!

● Therefore: the first person to contact should always be your group leader!
– He (alternatively: your group's computing contact) should have an overview of your group's resources
– … and should announce further demands directly to us or via the Computing Board

I need more space!

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 10

AFS
● Organized in volumes with quotas

– Your $HOME directory on WGS is one volume
– Volumes have mountpoints (the place they are accessible for the client)
– Partly self-service management via group admins

● Access restrictions via ACLs (access control lists) per directory

● Centrally managed backup
– … and last day's snapshot of $HOME available in ~/.OldFiles !

● Authentication based on a so-called „AFS token”
– Will be generated automatically during the login process
– … but can and will finally expire if not renewed in time (lifetime 25 hours)
– Expiring AFS tokens are the main source of access problems!

● Unfortunately AFS not designed to work flawlessly on mobile devices (like notebooks)
– use sshfs or your client's “connect to server” (connection type: ssh) instead

… still the work horse for personal data

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 11

AFS
● Group‘s AFS space managed by groups themselves:

– First person to contact: your group’s computing contact
– Create, increase, … volumes beyond /afs/ifh.de/group/<group>

● Please do not mess with ACLs directly in $HOME
– Use subdirectories and adapt ACLs there
– Classic Unix access rights are mainly ignored, so something like this is useless:
–

● Some subdirectories in AFS $HOME are automatically created during account initialisation:
– ~/private : your private space, ACLs adjusted so that only you can access files stored there
– ~/public : the opposite – any other user with AFS access can read files
– ~/public/www : content visible on our public webserver (https://www.zeuthen.desy.de/~<user>)

… basic management

[wgs34] ~ % chmod 0600 my-private-file

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 12

AFS ACLs explained

● Some pre-defined groups are often set:

system:anyuser any user in the world

system:administrators an administrator

ifh-hosts all hosts at DESY Zeuthen

desy-hosts all hosts at DESY (Hamburg + Zeuthen)

group:<group name> members of a DESY group

● AFS rights:
l lookup - read entries in this directory

r read – read files in this directory

w write – write files in this directory

i insert – add new files to this directory

d delete – delete files from this directory

a administer – modify ACLs in this directory

[wgs1d] /project/singularity % fs la .
Access list for . is
Normal rights:
 desy-hosts rl
 ifh-hosts rl
 system:administrators rlidwka
 group:usg_zn rlidwka
 system:anyuser l
 znasw rlidwka

example ACL:

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 13

AFS usage examples
● Show quota:

… yes, you can do this at home :-)

[wgs34] ~ % fs lq ~
Volume Name Quota Used %Used Partition
user.ahaupt 2000000 1549680 77% 16%

● List ACLs:
[wgs34] ~ % fs la ~
Access list for /afs/ifh.de/user/a/ahaupt is
Normal rights:
 system:administrators rlidwka
 system:anyuser l
 ahaupt rlidwka

● Add an ACL to a directory:
[wgs34] ~ % fs sa ~/friends group:cta rl
[wgs34] ~ % fs la ~/friends
Access list for /afs/ifh.de/user/a/ahaupt/friends is
Normal rights:
 group:cta rl
 system:administrators rlidwka
 system:anyuser l
 ahaupt rlidwka

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 14

AFS usage examples
● Instant (world-wide) data sharing:

… continued

[wgs34] ~ % echo 'very cool content' > ~/public/www/my-share.txt
[wgs34] ~ % curl https://www.zeuthen.desy.de/~ahaupt/my-share.txt
very cool content

● Check if your AFS token is still valid:

[wgs34] ~ % tokens

Tokens held by the Cache Manager:

Tokens for afs@ifh.de [Expires May 29 09:20]
 --End of list--

● Fetch a new AFS token (including a new Kerberos ticket):

[wgs34] ~ % kinit
ahaupt@IFH.DE's Password:

[wgs34] ~ % tokens

Tokens held by the Cache Manager:

Tokens for afs@ifh.de [Expires May 29 09:20]
 --End of list--

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 15

Lustre
● Large and fast “scratch space”

– Suitable for any bulk data (in large files preferably!)
– NOT designed to host source trees, executables, etc.

● minimum internal request size is 1MB – so if you think you read a 5kByte file, you read 1MB
instead!

– There is NO BACKUP!
● Currently six independent instances active:

– /lustre/fs{18..23}
● Every Lustre file system lives for 5-6 years and gets replaced by a new one after that

– Group's task to migrate data still needed
– A bit of an effort, but also an easy way to clean up – by just doing nothing ;-)

… put your huge datasets here

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 16

dCache
● Biggest data provider at DESY (not just only in Zeuthen)

● Storage solution to share huge datasets with collaborations anywhere in the world

● Transparent tape backend possible

● Many access protocols

– dCap (deprecated)
– NFS-4.1 (makes it feel just like a „normal“ file system)
– GSIFTP
– WebDAV (https)

● Many authentication methods exist
– GSI (Grid security infrastructure with X.509 certificates)
– Kerberos
– Macaroons (bearer tokens) – only for WebDAV access

… the data archive

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 17

dCache usage
● dCache only partly behaves like a normal Posix file system

– no file modifications possible – modification means: deletion / re-creation

● Two mountpoints exist:
– /acs : Old, legacy entry point

● metadata operations (deletions, chmod, ...)
● dccp entry (dccp /acs/… /tmp/file)
● writing/reading data only possible with dCap client (dccp) here!

– /pnfs/ifh.de/acs : nowadays preferred NFS-4.1 based access
● handle files just like on any other file system

● Beware of bulk data operations on areas with a tape backend
– Unfortunately these areas are not easily identifiable from user's perspective

● … but had been agreed with group’s contact “some time ago”
– Nevertheless, usually only group's computing admin (or your collaboration) will modify content
– Massive staging from tape (i.e. >1000 files) should be pre-announced to dCache admins

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 18

Sync&Share
● Provided by colleagues at DESY Hamburg

● Based on the file hosting service “NextCloud”

● In theory without any quota!

● Data accessible via web browser, mobile app as well as sync client on any client device

– Unfortunately data access on centrally managed nodes (wgs, farm, etc.) not available, yet!
● unclear, when this will change :-(

● Anyway, the perfect place to store and share your documents!

… aka „DESYCloud”

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 19

Storage summary
● Unfortunately a “silver bullet” that perfectly fits all storage use cases does not exist

– It's also questionable whether it will ever exist ...
● Some rules of thumb where to put your data:

Kind of data Where to put

Your thesis AFS $HOME / Sync&Share

Collaboration's, group's or private documents AFS $HOME / Sync&Share

Collaboration or group (raw) data dCache

private or group's simulated / derived data Lustre

Software, histograms, ... AFS group space

Batch

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 21

Batch computing
● Have to run too many tasks for a single node?

– spread the work load over many minions …

● A batch system takes care to schedule your task/job to
the next free node as soon as possible

… heat the computing centre, efficiently ;-)

you
batch master

● DESY, Zeuthen uses Univa Grid Engine as
batch queueing system

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 22

Structure your work / tasks
● Divide your problem into smaller (or even: atomic) tasks

– every task is a potential single job
– In case tasks depend on each other, think of building depency graphs

● … and look for the 'hold_jid' option in the qsub man page
● There's unfortunately no such thing as a “patent remedy”

– Think about your problem, if in doubt ask for help

● Keep job run times in mind
– Prefererred from admin's point of view: 1-12 hours per job

● moderately high job turnaround eases scheduler decisions
● little lost time in case of node failures
● and most important: eases admin's maintenance tasks (reboot campaigns, etc.) ;-)

– Too many too short jobs stress the scheduler

● Jobs running for 2 days or even more?
– It is highly suggested to split those into smaller tasks

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 23

Example job script
● A batch job is actually just a shell script

– … with some additional information for the scheduler (lines starting with #$)

#!/bin/bash
#
job runtime
#$ -l h_rt=05:30:00
maximum memory usage (resident set size) of this job
#$ -l h_rss=2G
scratch space needed in $TMPDIR
#$ -l tmpdir_size=2G
job's STDOUT/STDERR directory (needs to exist!)
#$ -o /afs/ifh.de/group/mygroup/logfiles/
#$ -j y

change to scratch directory
cd $TMPDIR
copy input data to scratch directory
cp /afs/ifh.de/group/mygroup/rawdata/file file
write calculated output also to scratch first
/path/to/executable/which/works/on/file -in file -out output
copy the output back into afs
cp output /afs/ifh.de/group/mygroup/mydir/output/

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 24

Example job workflow
● Submit a job:
[wgs34] ~ % qsub <my-job-script>
Your job 61082956 ("myjob") has been submitted

● Query the job:

[wgs34] ~ % qstat -j 61082956
… lots of job information …

● Delete the job (in case you realise you made a mistake during submission):

[wgs34] ~ % qdel -j 61082956
user has registered the job 61082956 for deletion

● Query the job:

● Query error reason, if job failed to start (ended in status: Eqw)

[wgs34] ~ % sge-job-error 61212300
Task: 1, Error: 05/28/2020 13:34:42 [9132:10151]: can't make directory "/bla/bla" as stdout_path:
Permission denied

[wgs34] ~ % qdel 61082956
user has registered the job 61082956 for deletion

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 25

Know your (job) limits!
● Your jobs will get assigned a part of the execution node's resources

● Resources (memory, disk space, ...) are NOT unlimited

– of course, you knew it before, but better remind too much than too little … ;-)

● Overestimation will result in decreased throughput
– and wasted resources!
– use the job dashboard (slide 34) to validate

● If in doubt: run a sample job and measure its demands

● Many jobs request way too much h_rss!
– … compared to actual usage

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 26

Specialities
● Array jobs provide a way to submit hundreds of identical jobs with a single „qsub“ statement

– Submit a job with 500 tasks: qsub -t 1-500 <job>
– Inside a running job you can query your task-id via the env variable $SGE_TASK_ID
– hint: $SGE_TASK_ID could be e.g. used as start seed in these identical jobs

● By default a job slot gets assigned a single, physical cpu core

– All of our execution nodes run with hyperthreading activated – so a job can consume two (virtual)
cpus

– Core binding is active by default – a job can only run on the assigned cpu core

● Multi-threaded jobs (e.g. OpenMP) should use parallel environment “multicore”.
– request 4 cpu cores on a single node: qsub -pe multicore 4 <job>

● Execution nodes are up to 6 years old → not all new cpu features available on all nodes

– request a cpu providing AVX2 instruction set: qsub -l avx2 <job>
– request a cpu providing AVX512 instruction set: qsub -l avx512 <job>

Array jobs, AVX, etc.

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 27

GPGPUs
● Thanks to Icecube our farm also hosts ~150 nVidia General Purpuse GPU devices

– freely available for opportunistic usage!
– just in case you need to run some Machine Learing, TensorFlow, etc.

● Different models available:
– Tesla K20m : 34 devices
– Tesla K80 : 44 devices
– Tesla P4 : 36 devices
– GeForce RTX 2080 Ti : 42 devices

● Request a GPGPU for your job: qsub -l gpu=1 <job>
– The device to use is set in $SGE_GPU_DEVICE
– $CUDA_VISIBLE_DEVICES is automatically set, too

● Request a special GPGPU model: qsub -l gpu=1,gpu_type=nvidia_geforce_rtx_2080_ti <job>

the bitcoin factory ;-)

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 28

Tips and tricks
● As mentioned, jobs should be self-contained

– Avoid exporting the whole submission environment to the job!
● This is NOT recommended: qsub -V <job>

● You can get a mail every time the status of your job changes

– qsub -m [b|e|a] <job> (start, end, abortion)
– Use with care!!! Really, I mean it!

● Job mass failures can easily result in mail storms!
● You can even block your mail box for legitimate mail temporarly

● Batch farm only hosts SL7-based nodes these days

– Singularity containers exist to run workload not compiled or available for this Linux distribution
– It's even partly, transparently integrated
– Run job in Ubuntu 18.04 Container: qsub -l singularity_os=u18 <job>

dos and don'ts

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 29

Some rules of thumb
● Use array jobs

– Much faster to submit many tasks
– Less overhead for the batch system

● Keep the number of log files per output directory reasonable

– better not exceed 1000 files per directory
● AFS cannot even store more than 64k files per directory (results in misleading error “file too

large”, though)
– and do NOT use $HOME for them – better a scratch directory in group's AFS space

● Again: avoid sending mails from thousands of jobs!
– Especially if you read your mail on non-DESY providers!

● Spam protections can/will temporary lock your mail account for legitimate mail, too!

… for mass productions

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 30

Usage of mass storage
● Mass storage is extremely vulnerable to inappropriate usage patterns

– limiting factor rather iops than (network) throughput
– e.g. recursive finds are a guarantee for trouble

● General rule of thumb: minimise I/O where possible
– your mileage may vary i.e. if your workflow is badly affected by data access latency
– try testing the different options

… for mass productions

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 31

Shares, priorities
● A scheduler run consists of multiple steps:

1) Filter all jobs in the queue which can be started based on requested and available resources
2) Prioritize these remaining jobs based on other group's current/past jobs usage and configured share
3) Start all jobs from the top of this list until available resources are exceeded

● A „share” is globally configured and describes the portion of compute resources a group should get

– Configured share distribution is to be decided by Computing Board
– A “buy in” of extra group resources is supported, too

● In case a group does not use its share, others can step in
– “opportunistic usage”

… scheduling explained in a nutshell

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 32

Reservations
● Jobs with huge resource demands can „starve” in the queue

– Filtered out during each scheduling run as requested resources unavailable at this
moment

● Occupied by other jobs
● … and “smaller” jobs fill the little gaps again and again

● Reservation: scheduler predicts a future point in time where the resource are available
– and keeps the small gaps free in the meantime

● Reservations are an expensive operation!
– Nevertheless automatically enabled for:

● Multicore / smp jobs
● Jobs requesting h_rss > 8GB
● Can also be enabled manually:

… when classic scheduling hits the limit

[wgs34] ~ % qsub -R y <job>

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 34

Monitoring ...
● Old monitoring page still works, but developer left DESY (or: retired) two years ago...

– https://www-zeuthen.desy.de/macbat/mon

● Nevertheless a fine-granular monitoring of your job's behaviour can pin (potential) problems

● We recently introduced a new computing centre monitoring infrastructure based on Prometheus,
ElasticSearch & Grafana
– … and started collecting job and batch system metrics into it

● During runtime a job can be queried with: qstat -j <job-id>
– many rather useless information displayed here, though …

● Alternatively, query the url to a Grafana-based dashboard with: sge-job-url <job-id> [task-id]

… a big mess at the moment :-(

[wgs1d] ~ % sge-job-url 61024550 757
https://statspub.zeuthen.desy.de/d/gnpN1neZz/gridengine-job-status?orgId=1&refresh=1m&var-
farm=local&var-job_id=61024550&var-task_id=757&from=1590622956000&to=now

https://www-zeuthen.desy.de/macbat/mon

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 35

A job dashboard ...

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 36

A batch system dashboard ...
https://statspub.zeuthen.desy.de/d/T28VV4_Wk/gridengine-status?orgId=1&refresh=1m&var-farm=local

● Keep an eye on CPU &
Memory utilisation

– Farm is full if one of them is
close to 100%

● Due to special treatment of
GPU jobs cpu utilization can
exceed 100% temporary

https://statspub.zeuthen.desy.de/d/T28VV4_Wk/gridengine-status?orgId=1&refresh=1m&var-farm=local

| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 37

That's it folks ...

● Please also read our docs:

– Storage: https://dv-zeuthen.desy.de/services/storage_recources/
– Batch: https://dv-zeuthen.desy.de/services/batch/

● … as well as some hints to set up your notebook for easier remote access:
– https://dvinfo.zeuthen.desy.de/BYOD/User-Info

https://dv-zeuthen.desy.de/services/storage_recources/
https://dv-zeuthen.desy.de/services/batch/
https://dvinfo.zeuthen.desy.de/BYOD/User-Info

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 34
	Folie 35
	Folie 36
	Folie 37

