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Motivation
● The Computing Centre hosts lots of (expensive) compute/storage resources

– Aim to get the most output and value out of them

● The talk will be divided into two main parts: storage & compute
– Both are closely connected
– Incorrect usage of central resources can badly affect performance & availability

● not just only for you, but for every other user!
● so it helps all of us to avoid bad usage patterns ;-)

● Disclaimer …
– Amount of information is quite huge and was shortened at some points
– In case of missing details, another presentation (one topic, more detailed) could be provided

… what you should take home from this talk
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Overview
● Compute resources

Numbers, numbers, numbers ...

Cluster use case Cores HS06

PAX HPC ~1800 40k

Local farm High Throughput ~3500 70k

Grid farm Grid Computing ~4500 92k
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Overview
● Central storage resources

Numbers, numbers, numbers ...

Storage product Use case capacity / servers Notes

Lustre mass storage with fast 
parallel data access 
(scratch space)

~2.8PB / 36

dCache data archive, mass 
storage with fast parallel 
data access

~7.3PB / 100

AFS $HOME, software, 
scratch

~260TB / 22

Sync&Share Document share Provided by DESY-HH



Storage
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Central storage systems
● Network-attached storage is supposed to provide:

– Data access on whichever client system you are running your stuff
– Fast, aggregated data throughput by accumulating the power of many storage servers

● However, this flexibility has some drawbacks
– Latency matters!

● metadata i/o operations are comparable slow due to complex operations in background
● open/close ops, recursive find, compiling software!

– File locks are usually only enforced on the same client
– Your notebook ssd will perform significantly better for some usage patterns

● Keep this in mind whenever you are migrating software/workflows to our central compute environment

… some general remarks
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Central storage systems

● Avoid i/o as much as possible
– example: avoid reading the same files again and again

● Avoid too many clients writing into the same directory

● Avoid concurrent writes from multiple clients to the same file
– in many cases the result will not be the expected one ...

● Try to move i/o operations which are affected by latency to local 
scratch (/tmp, $TMPDIR)
– Example: untar software in /tmp, compile in /tmp but install to AFS

● In extreme cases: consider usage of ramdisks (/dev/shm)
– but do not forget to clean up afterwards

… even more general advises
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0

10

20

30

40

50

60

70

80

90

100

runtime

Extract Linux kernel (>70k files)
Runtime in seconds:
tar -xJf linux-5.6.15.tar.xz
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In case of problems ...
● In case of data access issues (slow ops, errors, etc.)  contact uco-zn@desy.de

● Please be as much precise as possible in describing your problem!
– It really helps us identifying the possible source of the problem

● A typical complaint: “My access to cluster is slow!”
– … but what does that mean?
– Therefore here some details we always would like to here from you:

● Which operations do not perform as desired?
● Which files/directories are affected?
● Which client(s) are you using when hitting the problem?
● In case you use many clients: Are all of them affected? Or just some of them? Which ones?

when things go wrong ...

mailto:uco-zn@desy.de
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Getting storage resources
● Please keep in mind that we are not allowed to purchase large amounts of storage “on spec”

– mainly: financial restrictions ...

● Unfortunately, especially for Lustre storage, we are not as flexible in providing new space as we want
– Lustre is not designed to get easily extended once is has been established

● “just put in another machine” does not really work :-(
– We usually establish one Lustre file system per year

● This should cover all the year's demands
– So, we need to know yearly storage demands well in advance!

● Therefore: the first person to contact should always be your group leader!
– He (alternatively: your group's computing contact) should have an overview of your group's resources
– … and should announce further demands directly to us or via the Computing Board

I need more space!
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AFS
● Organized in volumes with quotas

– Your $HOME directory on WGS is one volume
– Volumes have mountpoints (the place they are accessible for the client)
– Partly self-service management via group admins 

● Access restrictions via ACLs (access control lists) per directory

● Centrally managed backup
– … and last day's snapshot of $HOME available in ~/.OldFiles !

● Authentication based on a so-called „AFS token”
– Will be generated automatically during the login process
– … but can and will finally expire if not renewed in time (lifetime 25 hours)
– Expiring AFS tokens are the main source of access problems!  

● Unfortunately AFS not designed to work flawlessly on mobile devices (like notebooks)
– use sshfs or your client's “connect to server” (connection type: ssh) instead

… still the work horse for personal data
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AFS
● Group‘s AFS space managed by groups themselves:

– First person to contact: your group’s computing contact
– Create, increase, … volumes beyond /afs/ifh.de/group/<group>

● Please do not mess with ACLs directly in $HOME
– Use subdirectories and adapt ACLs there
– Classic Unix access rights are mainly ignored, so something like this is useless:
–

● Some subdirectories in AFS $HOME are automatically created during account initialisation:
– ~/private : your private space, ACLs adjusted so that only you can access files stored there
– ~/public : the opposite – any other user with AFS access can read files
– ~/public/www : content visible on our public webserver (https://www.zeuthen.desy.de/~<user>)

… basic management

[wgs34] ~ % chmod 0600 my-private-file
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AFS ACLs explained

● Some pre-defined groups are often set:

system:anyuser any user in the world

system:administrators an administrator

ifh-hosts all hosts at DESY Zeuthen

desy-hosts all hosts at DESY (Hamburg + Zeuthen)

group:<group name> members of a DESY group

● AFS rights:
l lookup - read entries in this directory

r read – read files in this directory

w write – write files in this directory

i insert – add new files to this directory

d delete – delete files from this directory

a administer – modify ACLs in this directory

[wgs1d] /project/singularity % fs la .
Access list for . is
Normal rights:
  desy-hosts rl
  ifh-hosts rl
  system:administrators rlidwka
  group:usg_zn rlidwka
  system:anyuser l
  znasw rlidwka

example ACL:
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AFS usage examples
● Show quota:

… yes, you can do this at home :-)

[wgs34] ~ % fs lq ~
Volume Name                    Quota       Used %Used   Partition
user.ahaupt                  2000000    1549680   77%         16%  

● List ACLs:
[wgs34] ~ % fs la ~
Access list for /afs/ifh.de/user/a/ahaupt is
Normal rights:
  system:administrators rlidwka
  system:anyuser l
  ahaupt rlidwka

● Add an ACL to a directory:
[wgs34] ~ % fs sa ~/friends group:cta rl
[wgs34] ~ % fs la ~/friends 
Access list for /afs/ifh.de/user/a/ahaupt/friends is
Normal rights:
  group:cta rl
  system:administrators rlidwka
  system:anyuser l
  ahaupt rlidwka
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AFS usage examples
● Instant (world-wide) data sharing:

… continued

[wgs34] ~ % echo 'very cool content' > ~/public/www/my-share.txt
[wgs34] ~ % curl https://www.zeuthen.desy.de/~ahaupt/my-share.txt
very cool content

● Check if your AFS token is still valid:

[wgs34] ~ % tokens

Tokens held by the Cache Manager:

Tokens for afs@ifh.de [Expires May 29 09:20]
   --End of list--

● Fetch a new AFS token (including a new Kerberos ticket):

[wgs34] ~ % kinit
ahaupt@IFH.DE's Password: 

[wgs34] ~ % tokens

Tokens held by the Cache Manager:

Tokens for afs@ifh.de [Expires May 29 09:20]
   --End of list--
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Lustre
● Large and fast “scratch space”

– Suitable for any bulk data (in large files preferably!)
– NOT designed to host source trees, executables, etc.

● minimum internal request size is 1MB – so if you think you read a 5kByte file, you read 1MB 
instead!

– There is NO BACKUP!
● Currently six independent instances active:

– /lustre/fs{18..23}
● Every Lustre file system lives for 5-6 years and gets replaced by a new one after that

– Group's task to migrate data still needed
– A bit of an effort, but also an easy way to clean up – by just doing nothing ;-)

… put your huge datasets here 
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dCache
● Biggest data provider at DESY (not just only in Zeuthen)

● Storage solution to share huge datasets with collaborations anywhere in the world

● Transparent tape backend possible

● Many access protocols

– dCap (deprecated)
– NFS-4.1 (makes it feel just like a „normal“ file system)
– GSIFTP
– WebDAV (https)

● Many authentication methods exist
– GSI (Grid security infrastructure with X.509 certificates)
– Kerberos
– Macaroons (bearer tokens) – only for WebDAV access

… the data archive
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dCache usage
● dCache only partly behaves like a normal Posix file system

– no file modifications possible – modification means: deletion  / re-creation

● Two mountpoints exist:
– /acs : Old, legacy entry point

● metadata operations (deletions, chmod, ...)
● dccp entry (dccp /acs/… /tmp/file)
● writing/reading data only possible with dCap client (dccp) here!

– /pnfs/ifh.de/acs : nowadays preferred NFS-4.1 based access
● handle files just like on any other file system

● Beware of bulk data operations on areas with a tape backend
– Unfortunately these areas are not easily identifiable from user's perspective

● … but had been agreed with group’s contact “some time ago”
– Nevertheless, usually only group's computing admin (or your collaboration) will modify content
– Massive staging from tape (i.e. >1000 files) should be pre-announced to dCache admins
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Sync&Share
● Provided by colleagues at DESY Hamburg

● Based on the file hosting service “NextCloud”

● In theory without any quota!

● Data accessible via web browser, mobile app as well as sync client on any client device

– Unfortunately data access on centrally managed nodes (wgs, farm, etc.) not available, yet!
● unclear, when this will change :-(

● Anyway, the perfect place to store and share your documents!

… aka „DESYCloud”
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Storage summary
● Unfortunately a “silver bullet” that perfectly fits all storage use cases does not exist

– It's also questionable whether it will ever exist ...
● Some rules of thumb where to put your data:

Kind of data Where to put

Your thesis AFS $HOME / Sync&Share

Collaboration's, group's or private documents AFS $HOME / Sync&Share

Collaboration or group (raw) data dCache

private or group's simulated / derived data Lustre

Software, histograms, ... AFS group space



Batch
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Batch computing
● Have to run too many tasks for a single node?

– spread the work load over many minions …

● A batch system takes care to schedule your task/job to 
the next free node as soon as possible

… heat the computing centre, efficiently ;-)

you  
batch master

● DESY, Zeuthen uses Univa Grid Engine as 
batch queueing system



| Effective use of batch computing and storage in Zeuthen | Andreas Haupt, Data Science Seminar
page 22

Structure your work / tasks
● Divide your problem into smaller (or even: atomic) tasks

– every task is a potential single job
– In case tasks depend on each other, think of building depency graphs

● … and look for the 'hold_jid' option in the qsub man page
● There's unfortunately no such thing as a “patent remedy”

– Think about your problem, if in doubt ask for help

● Keep job run times in mind
– Prefererred from admin's point of view: 1-12 hours per job

● moderately high job turnaround eases scheduler decisions
● little lost time in case of node failures
● and most important: eases admin's maintenance tasks (reboot campaigns, etc.) ;-)

– Too many too short jobs stress the scheduler

● Jobs running for 2 days or even more?
– It is highly suggested to split those into smaller tasks
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Example job script
● A batch job is actually just a shell script

– … with some additional information for the scheduler (lines starting with #$)

#!/bin/bash
#
# job runtime
#$ -l h_rt=05:30:00
# maximum memory usage (resident set size) of this job
#$ -l h_rss=2G
# scratch space needed in $TMPDIR
#$ -l tmpdir_size=2G
# job's STDOUT/STDERR directory (needs to exist!)
#$ -o /afs/ifh.de/group/mygroup/logfiles/
#$ -j y

# change to scratch directory
cd $TMPDIR
# copy input data to scratch directory
cp /afs/ifh.de/group/mygroup/rawdata/file file
# write calculated output also to scratch first
/path/to/executable/which/works/on/file -in file -out output
# copy the output back into afs
cp output /afs/ifh.de/group/mygroup/mydir/output/
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Example job workflow
● Submit a job:
[wgs34] ~ % qsub <my-job-script>
Your job 61082956 ("myjob") has been submitted

● Query the job:

[wgs34] ~ % qstat -j 61082956
… lots of job information … 

● Delete the job (in case you realise you made a mistake during submission):

[wgs34] ~ % qdel -j 61082956
user has registered the job 61082956 for deletion

● Query the job:

● Query error reason, if job failed to start (ended in status: Eqw)

[wgs34] ~ % sge-job-error 61212300
Task: 1, Error: 05/28/2020 13:34:42 [9132:10151]: can't make directory "/bla/bla" as stdout_path: 
Permission denied

[wgs34] ~ % qdel 61082956
user has registered the job 61082956 for deletion
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Know your (job) limits!
● Your jobs will get assigned a part of the execution node's resources

● Resources (memory, disk space, ...) are NOT unlimited

– of course, you knew it before, but better remind too much than too little … ;-)

● Overestimation will result in decreased throughput
– and wasted resources!
– use the job dashboard (slide 34) to validate

● If in doubt: run a sample job and measure its demands

● Many jobs request way too much h_rss!
– … compared to actual usage
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Specialities
● Array jobs provide a way to submit hundreds of identical jobs with a single „qsub“ statement

– Submit a job with 500 tasks: qsub -t 1-500 <job>
– Inside a running job you can query your task-id via the env variable $SGE_TASK_ID
– hint: $SGE_TASK_ID could be e.g. used as start seed in these identical jobs

● By default a job slot gets assigned a single, physical cpu core

– All of our execution nodes run with hyperthreading activated – so a job can consume two (virtual) 
cpus

– Core binding is active by default – a job can only run on the assigned cpu core

● Multi-threaded jobs (e.g. OpenMP) should use parallel environment “multicore”.
– request 4 cpu cores on a single node: qsub -pe multicore 4 <job>

● Execution nodes are up to 6 years old → not all new cpu features available on all nodes

– request a cpu providing AVX2 instruction set: qsub -l avx2 <job>
– request a cpu providing AVX512 instruction set: qsub -l avx512 <job>

Array jobs, AVX, etc.
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GPGPUs
● Thanks to Icecube our farm also hosts ~150 nVidia General Purpuse GPU devices

– freely available for opportunistic usage!
– just in case you need to run some Machine Learing, TensorFlow, etc.

● Different models available:
– Tesla K20m : 34 devices
– Tesla K80 : 44 devices
– Tesla P4 : 36 devices
– GeForce RTX 2080 Ti : 42 devices

● Request a GPGPU for your job: qsub -l gpu=1 <job>
– The device to use is set in $SGE_GPU_DEVICE
– $CUDA_VISIBLE_DEVICES is automatically set, too

● Request a special GPGPU model: qsub -l gpu=1,gpu_type=nvidia_geforce_rtx_2080_ti <job>

the bitcoin factory ;-)
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Tips and tricks
● As mentioned, jobs should be self-contained

– Avoid exporting the whole submission environment to the job!
● This is NOT recommended: qsub -V <job>

● You can get a mail every time the status of your job changes

– qsub -m [b|e|a] <job> (start, end, abortion)
– Use with care!!! Really, I mean it!

● Job mass failures can easily result in mail storms!
● You can even block your mail box for legitimate mail temporarly

● Batch farm only hosts SL7-based nodes these days

– Singularity containers exist to run workload not compiled or available for this Linux distribution
– It's even partly, transparently integrated
– Run job in Ubuntu 18.04 Container: qsub -l singularity_os=u18 <job>

dos and don'ts
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Some rules of thumb
● Use array jobs

– Much faster to submit many tasks
– Less overhead for the batch system

● Keep the number of log files per output directory reasonable

– better not exceed 1000 files per directory
● AFS cannot even store more than 64k files per directory (results in misleading error “file too 

large”, though)
– and do NOT use $HOME for them – better a scratch directory in group's AFS space

● Again: avoid sending mails from thousands of jobs!
– Especially if you read your mail on non-DESY providers!

● Spam protections can/will temporary lock your mail account for legitimate mail, too!

… for mass productions
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Usage of mass storage
● Mass storage is extremely vulnerable to inappropriate usage patterns

– limiting factor rather iops than (network) throughput
– e.g. recursive finds are a guarantee for trouble

● General rule of thumb: minimise I/O where possible
– your mileage may vary i.e. if your workflow is badly affected by data access latency
– try testing the different options

… for mass productions
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Shares, priorities
● A scheduler run consists of multiple steps:

1) Filter all jobs in the queue which can be started based on requested and available resources
2) Prioritize these remaining jobs based on other group's current/past jobs usage and configured share
3) Start all jobs from the top of this list until available resources are exceeded

● A „share” is globally configured and describes the portion of compute resources a group should get

– Configured share distribution is to be decided by Computing Board
– A “buy in” of extra group resources is supported, too

● In case a group does not use its share, others can step in
– “opportunistic usage”

… scheduling explained in a nutshell
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Reservations
● Jobs with huge resource demands can „starve” in the queue

– Filtered out during each scheduling run as requested resources unavailable at this 
moment

● Occupied by other jobs
● … and “smaller” jobs fill the little gaps again and again

● Reservation: scheduler predicts a future point in time where the resource are available
– and keeps the small gaps free in the meantime

● Reservations are an expensive operation!
– Nevertheless automatically enabled for:

● Multicore / smp jobs
● Jobs requesting h_rss > 8GB
● Can also be enabled manually:

… when classic scheduling hits the limit

[wgs34] ~ % qsub -R y <job>
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Monitoring ...
● Old monitoring page still works, but developer left DESY (or: retired) two years ago...

– https://www-zeuthen.desy.de/macbat/mon

● Nevertheless a fine-granular monitoring of your job's behaviour can pin (potential) problems

● We recently introduced a new computing centre monitoring infrastructure based on Prometheus, 
ElasticSearch & Grafana
– … and started collecting job and batch system metrics into it

● During runtime a job can be queried with: qstat -j <job-id>
– many rather useless information displayed here, though … 

● Alternatively, query the url to a Grafana-based dashboard with: sge-job-url <job-id> [task-id]

… a big mess at the moment :-(

[wgs1d] ~ % sge-job-url 61024550 757
https://statspub.zeuthen.desy.de/d/gnpN1neZz/gridengine-job-status?orgId=1&refresh=1m&var-
farm=local&var-job_id=61024550&var-task_id=757&from=1590622956000&to=now

https://www-zeuthen.desy.de/macbat/mon
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A job dashboard ...
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A batch system dashboard ...
https://statspub.zeuthen.desy.de/d/T28VV4_Wk/gridengine-status?orgId=1&refresh=1m&var-farm=local

● Keep an eye on CPU & 
Memory utilisation

– Farm is full if one of them is 
close to 100%

● Due to special treatment of 
GPU jobs cpu utilization can 
exceed 100% temporary

https://statspub.zeuthen.desy.de/d/T28VV4_Wk/gridengine-status?orgId=1&refresh=1m&var-farm=local
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That's it folks ...

● Please also read our docs:

– Storage: https://dv-zeuthen.desy.de/services/storage_recources/
– Batch: https://dv-zeuthen.desy.de/services/batch/

● … as well as some hints to set up your notebook for easier remote access:
– https://dvinfo.zeuthen.desy.de/BYOD/User-Info

https://dv-zeuthen.desy.de/services/storage_recources/
https://dv-zeuthen.desy.de/services/batch/
https://dvinfo.zeuthen.desy.de/BYOD/User-Info
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