From Astrophysics to Differential Privacy

Data science seminar DESY Zeuthen, April 2020 Matteo Giomi

About me

Science: time-domain astrophysics.

Now: privacy researcher.

Statice

Startup developing software for **privacy-preserving** data sharing.

Privacy

"Privacy is the ability of an individual to seclude themselves or information about themselves, and thereby express themselves selectively." (<u>wikipedia</u>)

Lack of privacy \rightarrow behavioural change.

Privacy in the digital era

Every interaction with technology creates data about the user.

- In the wrong hands data can be used for blackmail, social engineering, mass surveillance and the like.
- If used correctly, data can also lead to collective benefits.

Complete non-disclosure is not the best option. Also,

- We do share sensitive data with strangers (i.e. doctors)

How to share data in a privacy preserving way?

Example dataset

medical condition	zip code	sex	birth year	race	phone
chest_pain	1203002	f	1964	white	015940192
obesity	1203505	f	1964	white	010405919
short_breath	1203106	f	1964	white	011500159
heart_disease	5403221	m	1965	black	010192042
heart_disease	5403221	m	1965	black	015909191
heart_disease	5403221	m	1965	black	015553436
ovarian cancer	3003202	f	1960	white	016901095
ovarian cancer	3003555	f	1960	white	017497297
prostate cancer	3003890	m	1960	white	018206810

Identifiers and quasi-identifiers

	pho	ne	race	birth year	sex	zip	code	medica	I condition	
	015940192 010405919 011500159		white	1964	f	120	3002		chest_pain	
			white	1964	f	120	3505		obesity	
			white	1964	f	120	3106	S	hort_breath	
Personally identifying ¹² information (PII) ⁹¹		2	black	"Ouasi" ide	3221		he	Sensitive		
		91	black			010	3221	he	informatic	n
	015553436		black	1965	m	540	3221	he	art_disease	
01690109 01749729		95	white	1960	f	300	3202	ova	rian cancer	
		97	white	1960	f	300	3555	ova	rian cancer	
	0182068	10	white	1960	m	300	3890	pros	tate cancer	

"Sanitizing" a dataset

	pho	ne	race	birth year	sex	zip	code	medica	al condition	
	15940192		white	1964	f	120	3002		chest_pain	
	0 04059	19	white	1964	f	1203505			obesity	
	01 500	59	white	1964	f	120	3106	s	hort_breath	
Personally identifying ²		2	black	"Quasi" id	entifi	ers	3221	he	Sensitive	
information (P	II)	91	black	Quubi iu		010	3221	he	informatic	n
	0155531	36	black	1965	m	540	3221	he	art_disease	
	0159010	95	white	1960	f	300	3202	ova	arian cancer	
	174972	297	white	1960	f	300	3555	ova	arian cancer	
	0182068	310	white	1960	m	300	3890	pros	state cancer	

Re-identification via linkage

Even without PII individuals can be re-identified by linking with external information.

"We are all special"

Given enough quasi-identifiers everyone is unique \rightarrow can be re-identified with certainty.

Rocher, L., et al. Estimating the success of re-identifications in incomplete datasets using generative models.

Removing PII is not enough

The notion of PII has no technical meaning: <u>everything is PII!</u>

However:

"We do not share information of data in any personally identifiable form.."

Arvind Narayanan and Vitaly Shmatikov, Myths and and fallacies of "Personally identifiable information"

Old solution: k-anonymity

race

Avoid unique joints: "any combination of quasi-identifiers must appear at least *k* times"

birth year sex zip code medical condition

chest_pain	1203*	*	1964	white
obesity	1203*	*	1964	white
short_breath	1203*	*	1964	white
heart_disease	5403*	*	1965	black
heart_disease	5403*	*	1965	black
heart_disease	5403*	*	1965	black
ovarian cancer	3003*	*	1960	white
ovarian cancer	3003*	*	1960	white
prostate cancer	3003*	*	1960	white

P. Samarati and L. Sweeney, Protecting Privacy when Disclosing Information: k-Anonymity and its Enforcement through Generalization and Suppression

No solution: k-anonymity

Problems with k-anonymity: lack of diversity, background knowledge

phone	race	birth year	sex	zip code		white	1964	*	1203*	chest_pain
015940192	white	1964	f	1203002		white	1964	*	1203*	obesity
						white	1964	*	1203*	short_breath
						black	1965	*	5403*	heart_disease
phone	race	birth year	sex	zip code		black	1965	*	5403*	heart_disease
015909191	black	1965	f	5403014		black	1965	*	5403*	heart_disease
018206810	white	1960	m	3003890		white	1960	*	3003*	ovarian cancer
010200010	millio	1000				white	1960	*	3003*	ovarian cancer
					×	white	1960	*	3003*	prostate cancer

race birth year sex zip code medical condition

Differential privacy

Suppose I have a secret and I'm considering whether to share my data. I wish that

Pr(someone guess my secret | data) ~ Pr(someone guess my secret)

Dwork C., et al., (2006) Calibrating Noise to Sensitivity in Private Data Analysis

Differential privacy

Suppose I have a secret and I'm considering whether to share my data. I wish that

Pr(someone guess my secret | data) ~ Pr(someone guess my secret)

The ε parameter is the 'privacy guarantee':

- The smaller the ε the stronger the privacy.

$$\frac{\Pr[f(D)=R]}{\Pr[f(D\prime)=R]} \leq e^{\varepsilon}$$

DP example: laplacian mechanism

Adds noise draws from laplacian distribution:

 $M(f, \varepsilon, D) = f(D) + Laplace(\Delta f/\varepsilon)$

- Δf is the <u>sensitivity</u> of the query f: maximum change in its output due to single records in the dataset.
- For a given epsilon, high-sensitivity queries requires more noise.

Toy example

Use laplacian mechanism to estimate the average income of a population.

Problems: outliers

To mask an outlier much more noise have to be added.

Differential privacy

DP is a property of the analysis and is based on the <u>addition of 'just enough' noise</u>.

Pros:

- Makes no assumption on the attacker.
- Robust against post-processing.
- Different DP analysis compose.

Cons:

- Outliers requires large amount of noise.
- Noise can be averaged out via multiple queries.

Privacy-preserving synthetic data

- Use deep generative models to learn the data-generating distribution.
- Sample from this distribution to obtain synthetic data.

Deep learning with differential privacy

Models learn by minimizing a loss function.

Minimization via stochastic gradient descent (SGD).

The model interacts with the data <u>exclusively via</u> <u>the gradients</u>

Fitting a model with DP:

- Each gradient is clipped to a maximum length (fix the sensitivity).
- Noise is added to each gradient component.

This makes sure that the model won't learn from individual training examples. M. Abadi et al, Deep Learning with Differential Privacy (2016)

What am I doing every day

Implement DP algorithms and develop privacy evaluations (attack is the best defence)

Transition to industry: applying for a job

Before you start:

- Time (3 to 6 months) and patience.
- Sleek 1-page CV, honest cover letter (sometimes not asked).
- Profile on linkedin, glassdoors and the like.

Typical job interview:

- Initial call.
- Code challenge / test task.
- Final interview.

Job interview is a skill to be learned: don't be afraid to apply generously.

Transition to industry: tips and tricks

This is what I gathered

- For position you really like, get in contact through company website.
- Sometimes it's hard to convince people that you can "deliver".

Good to have:

- Familiarity with usual data-science stack: numpy, pandas, seaborn, sklearn.
- Plenty of material on machine learning (Andrew Ng on yt, for example).
- Plenty of datasets and tasks on <u>kaggle</u>, start playing around.
- Luck.

Thanks for the attention