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About me

Science: time-domain astrophysics. Now: privacy researcher.

Startup developing software for 
privacy-preserving data sharing.
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Privacy

“Privacy is the ability of an individual to seclude themselves or information about 
themselves, and thereby express themselves selectively.” (wikipedia)

Lack of privacy → behavioural change.
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https://en.wikipedia.org/wiki/Privacy


Privacy in the digital era

Every interaction with technology creates data about the user.

- In the wrong hands data can be used for blackmail, social engineering, mass 
surveillance and the like. 

- If used correctly, data can also lead to collective benefits.

Complete non-disclosure is not the best option.  Also,

- We do share sensitive data with strangers (i.e. doctors)

How to share data in a privacy preserving way?
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Example dataset
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Identifiers and quasi-identifiers

Personally identifying 
information (PII)

“Quasi” identifiers Sensitive 
information
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“Sanitizing” a dataset

Personally identifying 
information (PII)

“Quasi” identifiers Sensitive 
information
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Re-identification via linkage

Even without PII individuals can be re-identified by linking with external information.

Sweeney, Latanya. Weaving Technology and Policy Together to Maintain Confidentiality. Journal of Law, Medicine and Ethics, Vol. 25 1997, p. 98-110

‘Sanitized’ record, 
with sensitive data

Identifiable, no 
sensitive data
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https://onlinelibrary.wiley.com/doi/10.1111/j.1748-720X.1997.tb01885.x


“We are all special”

Given enough quasi-identifiers everyone is unique → can be re-identified with certainty.

Rocher, L., et al. Estimating the success of re-identifications in incomplete datasets using generative models.
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https://www.nature.com/articles/s41467-019-10933-3


Removing PII is not enough

The notion of PII has no technical meaning: everything is PII!

However:

“We do not share information of data in any personally identifiable form..”

Arvind Narayanan and Vitaly Shmatikov, Myths and and fallacies of “Personally identifiable information”
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http://www.cs.utexas.edu/users/shmat/shmat_cacm10.pdf


Old solution: k-anonymity

Avoid unique joints: “any combination of quasi-identifiers must appear at least k times”

P. Samarati and L. Sweeney, Protecting Privacy when Disclosing Information: k-Anonymity and its Enforcement through Generalization and Suppression
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https://dataprivacylab.org/dataprivacy/projects/kanonymity/paper3.pdf


No solution: k-anonymity

Problems with k-anonymity: lack of diversity, background knowledge
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Differential privacy

Suppose I have a secret and I’m considering whether to share my data. I wish that

Pr(someone guess my secret | data) ~ Pr(someone guess my secret)

D’
Dataset with my 

information

D
Dataset without my 

information

DP analysis 
f(D) = R

DP analysis 
f(D’) = R

Dwork C.,  et al.. (2006) Calibrating Noise to Sensitivity in Private Data Analysis
13

https://link.springer.com/chapter/10.1007%2F11681878_14
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The ε parameter is the ‘privacy guarantee’:
- The smaller the ε the stronger the privacy.

https://link.springer.com/chapter/10.1007%2F11681878_14


DP example: laplacian mechanism

Adds noise draws from laplacian distribution:

                 M(f, ε, D) = f(D) + Laplace(Δf/ε)

- Δf is the sensitivity of the query f: 
maximum change in its output due to 
single records in the dataset.

- For a given epsilon, high-sensitivity 
queries requires more noise.
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Toy example

Use laplacian mechanism to estimate the average income of a population.
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Problems: outliers

To mask an outlier much more noise have to be added.
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Differential privacy

DP is a property of the analysis and is based on the addition of ‘just enough’ noise.

Pros:

- Makes no assumption on the attacker.
- Robust against post-processing.
- Different DP analysis compose.

Cons:

- Outliers requires large amount of noise. 
- Noise can be averaged out via multiple queries.
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Privacy-preserving synthetic data

- Use deep generative models to learn the data-generating distribution. 
- Sample from this distribution to obtain synthetic data.

Original data Synthetic data
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Deep learning with differential privacy

Models learn by minimizing a loss function.

Minimization via stochastic gradient descent (SGD).

The model interacts with the data exclusively via 
the gradients

Fitting a model with DP:

- Each gradient is clipped to a maximum length (fix the sensitivity).
- Noise is added to each gradient component.

This makes sure that the model won’t learn from individual training examples. 
M. Abadi et al, Deep Learning with Differential Privacy (2016)
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https://arxiv.org/abs/1607.00133


What am I doing every day

Implement DP algorithms and develop privacy evaluations (attack is the best defence)
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Transition to industry: applying for a job

Before you start:

- Time (3 to 6 months) and patience.
- Sleek 1-page CV, honest cover letter (sometimes not asked).
- Profile on linkedin, glassdoors and the like.

Typical job interview:

- Initial call.
- Code challenge / test task.
- Final interview.

Job interview is a skill to be learned: don’t be afraid to apply generously.
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Transition to industry: tips and tricks

This is what I gathered

- For position you really like, get in contact through company website.
- Sometimes it’s hard to convince people that you can “deliver”.

Good to have:

- Familiarity with usual data-science stack: numpy, pandas, seaborn, sklearn.
- Plenty of material on machine learning (Andrew Ng on yt, for example).
- Plenty of datasets and tasks on kaggle, start playing around.
- Luck.
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https://www.kaggle.com/


Thanks for the attention
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