Systematic Errors (2) Working with Systematic Errors

Roger Barlow
Huddersfield University

Terascale Statistics School 2020
virtually at DESY, Hamburg

$$
9^{\text {th }} \text { July } 2020
$$

Why do we quote systematic errors separately?

Results are always given like

In conclusion, we have measured $m=12.1 \pm 0.3 \pm 0.4$, where the first error is statistical and the second is systematic

Or even ' \pm statistical, \pm systematic, \pm luminosity uncertainty, \pm theory uncertainty, \pm branching ratio uncertainty'

Why quote them separately?

Why not just 12.1 ± 0.5 ?
Minor reason - shows whether result is statistics limited
Major reason - to enable combination of this result with others that share a systematic uncertainty

Combination of Errors

What is the error on $f(x, y)$

For undergraduates

$$
\sigma_{f}^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} \sigma_{y}^{2}
$$

For graduates

$$
\sigma_{f}^{2}=\left(\frac{\partial f}{\partial x}\right)^{2} \sigma_{x}^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} \sigma_{y}^{2}+2 \rho\left(\frac{\partial f}{\partial x}\right)\left(\frac{\partial f}{\partial y}\right) \sigma_{x} \sigma_{y}
$$

If there are several functions and several variables this generalises to

$$
\begin{equation*}
\mathbf{V}_{f}=\tilde{\mathbf{G}} \mathbf{V}_{\mathrm{x}} \mathbf{G} \tag{1}
\end{equation*}
$$

where V_{f} and V_{x} are the covariance matrices and $G_{i j}=\frac{\partial f_{j}}{\partial x_{i}}$

Example - the straight line fit

$$
y=m x+c
$$

$$
m=\frac{\overline{x y}-\bar{x} \bar{y}}{\bar{x}^{2}-\bar{x}^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{N\left(\bar{x}^{2}-\bar{x}^{2}\right)}
$$

$$
c=\bar{y}-m \bar{x}=\frac{\overline{x^{2}} \bar{y}-\bar{x} \overline{x y}}{\bar{x}^{2}-\bar{x}^{2}}=\frac{\sum\left(\overline{x^{2}}-x_{i} \bar{x}\right) y_{i}}{N\left(\overline{x^{2}}-\bar{x}^{2}\right)}
$$

$$
\mathbf{V}_{\mathbf{y}}=\sigma^{2} \mathbf{I}
$$

Equation 1 gives the usual errors, and also the correlation:
$V_{m}=\frac{\sigma^{2}}{N\left(\bar{x}^{2}-\bar{x}^{2}\right)}$
$V_{c}=\frac{\sigma^{2} \bar{x}^{2}}{N\left(\bar{x}^{2}-\bar{x}^{2}\right)}$
$\operatorname{Cov}=-\frac{\overline{\bar{x}} \sigma^{2}}{N\left(\bar{x}^{2}-\bar{x}^{2}\right)}$
$\rho=-\frac{\bar{x}}{\sqrt{\bar{x}^{2}}}$

Note 1: Even though the y_{i} are independent, m and c are correlated Note 2: Correlation vanishes if $\bar{x}=0$. Or write $y=m(x-\bar{x})+c^{\prime}$
Note 3: in this example, $m=0.105 \pm 0.011, c=0.983 \pm 0.068, \rho=-0.886$

Example - the straight line fit

Continued

Extrapolation of a straight line - what is y at $x=20$?

$$
y=0.983+20 \times 0.105
$$

Error from $\sqrt{0.068^{2}+20^{2} \times 0.011^{2}}=0.23$ Wrong
Correct Error from
$\sqrt{0.068^{2}+20^{2} \times 0.011^{2}-2 \times 0.886 \times 20 \times 0.068 \times 0.011}=0.16$

Building a correlation matrix

 or covariance matrix, or variance matrix...Matrix element $V_{i j}=\left\langle\left(x_{i}-\left\langle x_{i}\right\rangle\right)\left(x_{j}-\left\langle x_{j}\right\rangle\right)\right\rangle=\left\langle x_{i} x_{j}\right\rangle-\left\langle x_{i}\right\rangle\left\langle x_{j}\right\rangle$
Given correlated x_{1} and x_{2}, model as $x_{1}=y_{1}+z, x_{2}=y_{2}+z$, where y_{1}, y_{2}, z independent with errors $\sigma_{1}, \sigma_{2}, S$.
$V_{11}=\left\langle\left(y_{1}+z\right)\left(y_{1}+z\right)\right\rangle-\left\langle\left(y_{1}+z\right)\right\rangle^{2}=\sigma_{1}^{2}+S^{2}$.
V_{22} similar

$$
V_{12}=V_{21}=\left\langle\left(y_{1}+z\right)\left(y_{2}+z\right)\right\rangle-\left\langle\left(y_{1}+z\right)\right\rangle\left\langle\left(y_{2}+z\right)\right\rangle=S^{2}
$$

$$
\mathbf{V}=\left(\begin{array}{cc}
\sigma_{1}^{2}+S^{2} & S^{2} \\
S^{2} & \sigma_{2}^{2}+S^{2}
\end{array}\right)
$$

For more variables, build up larger matrix where off-diagonal elements come from shared features, on-diagonal gives total variance.

Building a correlation matrix

continued

Suppose experiment A measures y_{1} and y_{2} with shared systematic uncertainty S_{A}, and experiment B measures y_{3} and y_{4} with shared S_{B}

$$
\mathbf{v}=\left(\begin{array}{cccc}
\sigma_{1}^{2}+S_{A}^{2} & S_{A}^{2} & 0 & 0 \\
S_{A}^{2} & \sigma_{2}^{2}+S_{A}^{2} & 0 & 0 \\
0 & 0 & \sigma_{3}^{2}+S_{B}^{2} & S_{B}^{2} \\
0 & 0 & S_{B}^{2} & \sigma_{4}^{2}+S_{B}^{2}
\end{array}\right)
$$

Similar for (more common) shared multiplicative uncertainty - (e.g. efficiency, luminosity, normalisation...)
$y_{1} \pm \sigma_{1} \pm S_{1}$ and $y_{2} \pm \sigma_{2} \pm S_{2}$ with $S_{1}=\xi y_{1}, S_{2}=\xi y_{2}$

$$
\mathbf{v}=\left(\begin{array}{cc}
\sigma_{1}^{2}+S_{1}^{2} & S_{1} S_{2} \\
S_{1} S_{2} & \sigma_{2}^{2}+S_{2}^{2}
\end{array}\right)
$$

PDG, HFLAV and similar groups do this on an industrial scale

Using the matrix

Independent measurements

Maximum Likelihood \rightarrow Least Squares \rightarrow minimise $\chi^{2}=\sum_{i}\left(\frac{y_{i}-f\left(x_{i}\right)}{\sigma_{i}}\right)^{2}$
What if the y_{i} are not independent but correlated with non-diagonal covariance matrix V_{y} ?
Change to $y^{\prime} . y_{1}^{\prime}=y_{1}, y_{2}^{\prime}=y_{2}+a y_{1}^{\prime}$ with a such that $\operatorname{Cov}\left(y_{1}^{\prime} y_{2}^{\prime}\right)=0$, etcetera
\mathbf{V}^{\prime} diagonal by construction. $\mathbf{V}^{\prime-1}=\left(\begin{array}{cccc}1 / \sigma_{1}^{\prime 2} & 0 & 0 & \cdots \\ 0 & 1 / \sigma_{2}^{\prime 2} & 0 & \cdots \\ 0 & 0 & 1 / \sigma_{3}^{\prime 2} & \cdots \\ \cdots & & & \end{array}\right)$
$\mathbf{y}^{\prime}=\mathbf{R y}$ so $\mathbf{V}^{\prime}=\left[\tilde{R} V^{-1} R\right]^{-1}$
Forget about the primed system and get $\chi^{2}=(\tilde{\mathbf{y}}-\tilde{\mathbf{f}}) \mathbf{V}^{-1}(\mathbf{y}-\mathbf{f})$

How does this all link to the Hessian matrix?

$$
\frac{\partial^{2} \ln L}{\partial a_{i} \partial a_{j}}
$$

$\hat{a_{1}}$ and $\hat{a_{2}}$ are functions of the data: maximise $\ln L\left(a_{1}, a_{2}\right)=\sum_{i} \ln P\left(x_{i} ; a_{1}, a_{2}\right)$

To first order about $a^{\text {true }}$,
$\left.\frac{\partial \ln L}{\partial a_{1}}\right|_{a=a^{\text {true }}}+\frac{\partial^{2} \ln L}{\partial a_{1}^{2}}\left(\hat{a}_{1}-a_{1}^{\text {true }}\right)+\frac{\partial^{2} \ln L}{\partial a_{1} \partial a_{2}}\left(\hat{a_{2}}-a_{2}^{\text {true }}\right)=0$
$\left.\frac{\partial \ln L}{\partial \mathrm{a}_{2}}\right|_{a=a^{\text {true }}}+\frac{\partial^{2} \ln L}{\partial a_{1} \partial a_{2}}\left(\hat{a_{1}}-a_{1}^{\text {true }}\right)+\frac{\partial^{2} \ln L}{\partial^{2} a_{2}}\left(\hat{a_{2}}-a_{2}^{\text {true }}\right)=0$
If unbiassed, $\left\langle\frac{\partial \ln L}{\partial a_{1}}\right\rangle=\int \ldots \int L \frac{\partial \ln L}{\partial a_{1}} d x_{1} d x_{2} d x_{3} \ldots=0$. Likewise for a_{2}.
Differentiating again, and using $\frac{\partial \ln L}{\partial a}=\frac{1}{L} \frac{\partial L}{\partial a}$ gives variance matrix for $\frac{\partial \ln L}{\partial a_{i}}$
$\left\langle\frac{\partial \ln L}{\partial a_{j}} \frac{\partial \ln L}{\partial a_{k}}\right\rangle=-\left\langle\frac{\partial^{2} \ln L}{\partial a_{j} \partial a_{k}}\right\rangle$
Covariance matrix is just inverse of Hessian matrix, approximating expectation values by actual values.

Averaging

BLUE

Given several (correlated) results y_{i}, how do you average them? Best Linear Unbiased Estimator (L Lyons et al, NIM A270 110 (1988)) Minimise $\chi^{2}=\sum_{i, j}\left(y_{i}-\hat{y}\right) V_{i j}^{-1}\left(y_{j}-\hat{y}\right)$
$\hat{y} \sum_{i, j} V_{i j}^{-1}=\sum_{i, j} V_{i j}^{-1} y_{j}$
Write as $\hat{y}=\sum_{i} w_{i} y_{i}$ with $w_{i}=\frac{\sum_{j} v_{i j}^{-1}}{\sum_{i, j} v_{i j}^{-1}}$
Error on \hat{y} given by $\sqrt{\tilde{\mathbf{w}} \mathbf{V w}}$
Notice that $\sum_{i} w_{i}=1$ which is intuitive
Notice that some w_{i} may be negative (if correlations are large) which is counterintuitve
This assumes the elements of \mathbf{V} are known exactly. If not, care needed.

The Poisson trap

What's the average of the 3 Poisson numbers: $8,9,10$?
Right answer: $(8+9+10) / 3=9$
Wrong answer $(1+1+1) /(1 / 8+1 / 9+1 / 10)=8.92$

Equivalent alternative for additive systematics

For n experiments, construct $n \times n$ covariance matrix \mathbf{V} and minimise χ^{2} Or introduce explicit offsets and drop systematic errors
$y_{i j}^{\prime}=y_{i j}+\xi_{j}$ for value i of experiment $j . \xi_{j}$ Gaussian with mean 0 , sd S_{j}, included in χ^{2}
Fit the ξ_{i} and the parameter(s) a
Downside: n more parameters to fit
Upside (1) avoids matrix inversion
Upside (2): extracts the factors which can be useful to check behaviour These two methods are actually (surprisingly!) equivalent

A Fitting Bias for multiplicative systematics

Adjust parameter(s) a to minimise $\chi^{2}=(\tilde{\mathbf{y}}-\tilde{\mathbf{f}}(x ; a)) \mathbf{V}^{-1}(\mathbf{y}-\mathbf{f}(x ; a))$ Bias possible if \mathbf{V} includes normalising systematic errors: $S_{i}=f y_{i}$ so increasing value increases error and lowers χ^{2} G. D'Agostini NIM A346 306 (1994) Indicates separate fit to systematic factors is better

Nuisance Parameters I

Profile Likelihood - motivation (not very rigorous)

You have a 2D likelihood plot with axes a_{1} and a_{2}. You are interested in a_{1} but not in a_{2} ('Nuisance parameter')
Different values of a_{2} give different results (central and errors) for a_{1} Suppose it is possible to transform to $a_{2}^{\prime}\left(a_{1}, a_{2}\right)$ so L factorises, like the one on the right. $L\left(a_{1}, a_{2}^{\prime}\right)=L_{1}\left(a_{1}\right) L_{2}\left(a_{2}^{\prime}\right)$
Whatever the value of a_{2}^{\prime}, get same result for a_{1}
So can present this result for a_{1}, independent of anything about a_{2}^{\prime}.
Path of central a_{2}^{\prime} value as fn of a_{1}, is peak - path is same in both plots So no need to factorise explicitly: plot $L\left(a_{1}, \hat{\hat{a}}_{2}\right)$ as fn of a_{1} and read off 1D values. $\hat{\hat{a}}_{2}\left(a_{1}\right)$ is the value of a_{2} which maximises $\ln L$ for this a_{1}

Nuisance Parameters 2

Marginalised likelihoods

Instead of profiling, just integrate over a_{2}.
Can be very helpful alternative, specially with many nuisance parameters But be aware - this is strictly Bayesian

Frequentists are not allowed to integrate likelihoods wrt the parameter $\int P(x ; a) d x$ is fine, but $\int P(x ; a) d a$ is off limits

Reparametrising a_{2} (or choosing a different prior) will give different values for a_{1}. With a bit of luck, even radical changes in the prior for a_{2} will not effect the frequentist result for a_{1}.
But don't just leave it to luck. Check and make sure.

Conclusions

Systematic errors can readily be handled - with the help of the correlation matrix and other techniques

