Systematic Errors (2) Working with Systematic Errors

Roger Barlow Huddersfield University

Terascale Statistics School 2020 virtually at DESY, Hamburg

9th July 2020

Why do we quote systematic errors separately?

Results are always given like

In conclusion, we have measured $m=12.1\pm0.3\pm0.4$, where the first error is statistical and the second is systematic

Or even ' \pm statistical, \pm systematic, \pm luminosity uncertainty, \pm theory uncertainty, \pm branching ratio uncertainty'

Why quote them separately?

Why not just 12.1 ± 0.5 ?

Minor reason - shows whether result is statistics limited Major reason - to enable combination of this result with others that share a systematic uncertainty

Combination of Errors

What is the error on f(x, y)

For undergraduates

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2$$

For graduates

$$\sigma_f^2 = \left(\frac{\partial f}{\partial x}\right)^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \sigma_y^2 + 2\rho \left(\frac{\partial f}{\partial x}\right) \left(\frac{\partial f}{\partial y}\right) \sigma_x \sigma_y$$

If there are several functions and several variables this generalises to

$$\mathbf{V}_f = \tilde{\mathbf{G}} \mathbf{V}_{\mathbf{x}} \mathbf{G} \tag{1}$$

where V_f and V_x are the covariance matrices and $G_{ij} = \frac{\partial f_j}{\partial x_i}$

Example - the straight line fit

$$y = mx + c$$

$$m = \frac{\overline{xy} - \overline{x} \overline{y}}{\overline{x^2} - \overline{x}^2} = \frac{\sum (x_i - \overline{x}) y_i}{N(\overline{x^2} - \overline{x}^2)}$$

$$c = \overline{y} - m\overline{x} = \frac{\overline{x^2} \overline{y} - \overline{x} \overline{xy}}{\overline{x^2} - \overline{x}^2} = \frac{\sum (\overline{x^2} - x_i \overline{x}) y_i}{N(\overline{x^2} - \overline{x}^2)}$$

$$\mathbf{V_y} = \sigma^2 \mathbf{I}$$

Equation 1 gives the usual errors, and also the correlation:

$$V_m = \frac{\sigma^2}{N(\overline{x^2} - \overline{x}^2)}$$
 $V_c = \frac{\sigma^2 \overline{x^2}}{N(\overline{x^2} - \overline{x}^2)}$ $Cov = -\frac{\overline{x}\sigma^2}{N(\overline{x^2} - \overline{x}^2)}$ $\rho = -\frac{\overline{x}}{\sqrt{\overline{x^2}}}$

Note 1: Even though the y_i are independent, m and c are correlated

Note 2: Correlation vanishes if $\overline{x} = 0$. Or write $y = m(x - \overline{x}) + c'$

Note 3: in this example,

$$m = 0.105 \pm 0.011$$
, $c = 0.983 \pm 0.068$, $\rho = -0.886$

Example - the straight line fit

Continued

Extrapolation of a straight line - what is y at x = 20?

$$y = 0.983 + 20 \times 0.105$$

Error from $\sqrt{0.068^2 + 20^2 \times 0.011^2} = 0.23$ Wrong

Correct Error from

$$\sqrt{0.068^2 + 20^2 \times 0.011^2 - 2 \times 0.886 \times 20 \times 0.068 \times 0.011} = 0.16$$

Building a correlation matrix

or covariance matrix, or variance matrix...

Matrix element
$$V_{ij} = \langle (x_i - \langle x_i \rangle)(x_j - \langle x_j \rangle) \rangle = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle$$

Given correlated x_1 and x_2 , model as $x_1 = y_1 + z$, $x_2 = y_2 + z$, where y_1, y_2, z independent with errors σ_1, σ_2, S .

$$V_{11} = \langle (y_1 + z)(y_1 + z) \rangle - \langle (y_1 + z) \rangle^2 = \sigma_1^2 + S^2.$$

 V_{22} similar
 $V_{12} = V_{21} = \langle (y_1 + z)(y_2 + z) \rangle - \langle (y_1 + z) \rangle \langle (y_2 + z) \rangle = S^2$

$$\mathbf{V} = egin{pmatrix} \sigma_1^2 + S^2 & S^2 \ S^2 & \sigma_2^2 + S^2 \end{pmatrix}$$

For more variables, build up larger matrix where off-diagonal elements come from shared features, on-diagonal gives total variance.

Building a correlation matrix

continued

Suppose experiment A measures y_1 and y_2 with shared systematic uncertainty S_A , and experiment B measures y_3 and y_4 with shared S_B

$$\mathbf{V} = \begin{pmatrix} \sigma_1^2 + S_A^2 & S_A^2 & 0 & 0 \\ S_A^2 & \sigma_2^2 + S_A^2 & 0 & 0 \\ 0 & 0 & \sigma_3^2 + S_B^2 & S_B^2 \\ 0 & 0 & S_B^2 & \sigma_4^2 + S_B^2 \end{pmatrix}$$

Similar for (more common) shared multiplicative uncertainty - (e.g. efficiency, luminosity, normalisation...)

$$y_1 \pm \sigma_1 \pm S_1$$
 and $y_2 \pm \sigma_2 \pm S_2$ with $S_1 = \xi y_1, S_2 = \xi y_2$

$$\mathbf{V} = egin{pmatrix} \sigma_1^2 + S_1^2 & S_1 S_2 \ S_1 S_2 & \sigma_2^2 + S_2^2 \end{pmatrix}$$

PDG, HFLAV and similar groups do this on an industrial scale

Using the matrix

Independent measurements

Maximum Likelihood o Least Squares o minimise $\chi^2 = \sum_i \left(\frac{y_i - f(x_i)}{\sigma_i}\right)^2$

What if the y_i are not independent but correlated with non-diagonal covariance matrix V_v ?

Change to y'. $y'_1 = y_1$, $y'_2 = y_2 + ay'_1$ with a such that $Cov(y'_1y'_2) = 0$, etcetera

$$\mathbf{V'} \text{ diagonal by construction. } \mathbf{V'}^{-1} = \begin{pmatrix} 1/\sigma_1'^2 & 0 & 0 & \dots \\ 0 & 1/\sigma_2'^2 & 0 & \dots \\ 0 & 0 & 1/\sigma_3'^2 & \dots \\ \dots & & & & \\ \end{pmatrix}$$

 $\mathbf{y}' = \mathbf{R}\mathbf{y}$ so $\mathbf{V}' = [\tilde{R}V^{-1}R]^{-1}$ Forget about the primed system and get $\chi^2 = (\tilde{\mathbf{y}} - \tilde{\mathbf{f}})\mathbf{V}^{-1}(\mathbf{y} - \mathbf{f})$

8 / 15

How does this all link to the Hessian matrix?

$$\frac{\partial^2 \ln L}{\partial a_i \partial a_j}$$

 \hat{a}_1 and \hat{a}_2 are functions of the data: maximise $\ln L(a_1, a_2) = \sum_i \ln P(x_i; a_1, a_2)$

To first order about a^{true}.

$$\frac{\partial \ln L}{\partial a_1}|_{a=a^{true}} + \frac{\partial^2 \ln L}{\partial a_1^2} (\hat{a}_1 - a_1^{true}) + \frac{\partial^2 \ln L}{\partial a_1 \partial a_2} (\hat{a}_2 - a_2^{true}) = 0$$

$$\frac{\partial \ln L}{\partial a_2}|_{a=a^{true}} + \frac{\partial^2 \ln L}{\partial a_1 \partial a_2} (\hat{a}_1 - a_1^{true}) + \frac{\partial^2 \ln L}{\partial^2 a_2} (\hat{a}_2 - a_2^{true}) = 0$$

$$\frac{\partial \mathbf{m} \cdot \mathbf{r}}{\partial a_2}|_{a=a^{true}} + \frac{\partial \mathbf{m} \cdot \mathbf{r}}{\partial a_1 \partial a_2} (a_1 - a_1^{true}) + \frac{\partial \mathbf{m} \cdot \mathbf{r}}{\partial a_2 \partial a_2} (a_2 - a_2^{true}) = 0$$

If unbiassed, $\left\langle \frac{\partial \ln L}{\partial a_1} \right\rangle = \int ... \int L \frac{\partial \ln L}{\partial a_1} dx_1 dx_2 dx_3.... = 0$. Likewise for a_2 .

Differentiating again, and using $\frac{\partial \ln L}{\partial a} = \frac{1}{L} \frac{\partial L}{\partial a}$ gives variance matrix for $\frac{\partial \ln L}{\partial a}$

$$\left\langle \frac{\partial \ln L}{\partial a_j} \frac{\partial \ln L}{\partial a_k} \right\rangle = -\left\langle \frac{\partial^2 \ln L}{\partial a_j \partial a_k} \right\rangle$$

Covariance matrix is just inverse of Hessian matrix, approximating expectation values by actual values.

9 / 15

Averaging

BLUE

Given several (correlated) results y_i , how do you average them?

Best Linear Unbiased Estimator (L Lyons et al, NIM **A270** 110 (1988)) Minimise $\chi^2 = \sum_{i,j} (y_i - \hat{y}) V_{ii}^{-1} (y_j - \hat{y})$

$$\hat{y} \sum_{i,j} V_{ij}^{-1} = \sum_{i,j} V_{ij}^{-1} y_j$$

Write as
$$\hat{y} = \sum_{i} w_i y_i$$
 with $w_i = \frac{\sum_{j} V_{ij}^{-1}}{\sum_{i,j} V_{ii}^{-1}}$

Error on \hat{y} given by $\sqrt{\tilde{\mathbf{w}}\mathbf{V}\mathbf{w}}$

Notice that $\sum_{i} w_{i} = 1$ which is intuitive

Notice that some w_i may be negative (if correlations are large) which is counterintuitve

This assumes the elements of ${f V}$ are known exactly. If not, care needed.

The Poisson trap

What's the average of the 3 Poisson numbers: 8,9,10?

Right answer: (8+9+10)/3=9

Wrong answer (1+1+1)/(1/8+1/9+1/10)=8.92

Equivalent alternative for additive systematics

For n experiments, construct $n \times n$ covariance matrix \mathbf{V} and minimise χ^2 Or introduce explicit offsets and drop systematic errors

 $y'_{ij} = y_{ij} + \xi_j$ for value i of experiment j. ξ_j Gaussian with mean 0, sd S_j , included in χ^2

Fit the ξ_i and the parameter(s) a

Downside: n more parameters to fit

Upside (1) avoids matrix inversion

Upside (2): extracts the factors which can be useful to check behaviour These two methods are actually (surprisingly!) equivalent

A Fitting Bias for multiplicative systematics

```
Adjust parameter(s) a to minimise \chi^2 = (\tilde{\mathbf{y}} - \tilde{\mathbf{f}}(x; a))\mathbf{V}^{-1}(\mathbf{y} - \mathbf{f}(x; a))
Bias possible if \mathbf{V} includes normalising systematic errors: S_i = fy_i so increasing value increases error and lowers \chi^2
G. D'Agostini NIM A346 306 (1994)
Indicates separate fit to systematic factors is better
```

Nuisance Parameters I

Profile Likelihood - motivation (not very rigorous)

You have a 2D likelihood plot with axes a_1 and a_2 . You are interested in a_1 but not in a_2 ('Nuisance parameter')

Different values of a_2 give different results (central and errors) for a_1

Suppose it is possible to transform to $a_2'(a_1,a_2)$ so L factorises, like the one on the right. $L(a_1,a_2')=L_1(a_1)L_2(a_2')$

Whatever the value of a_2' , get same result for a_1

So can present this result for a_1 , independent of anything about a'_2 .

Path of central a_2' value as fn of a_1 , is peak - path is same in both plots

So no need to factorise explicitly: plot $L(a_1, \hat{a}_2)$ as fn of a_1 and read off 1D values. $\hat{a}_2(a_1)$ is the value of a_2 which maximises $\ln L$ for this a_1

Nuisance Parameters 2

Marginalised likelihoods

Instead of profiling, just integrate over a_2 .

Can be very helpful alternative, specially with many nuisance parameters But be aware - this is strictly Bayesian

Frequentists are not allowed to integrate likelihoods wrt the parameter

 $\int P(x; a) dx$ is fine, but $\int P(x; a) da$ is off limits

Reparametrising a_2 (or choosing a different prior) will give different values for a_1 . With a bit of luck, even radical changes in the prior for a_2 will not effect the frequentist result for a_1 .

But don't just leave it to luck. Check and make sure.

Conclusions

Systematic errors can readily be handled - with the help of the correlation matrix and other techniques ${\sf matrix}$