

BAYES and FREQUENTISM: The Return of an Old Controversy

Louis Lyons

Oxford & Imperial College

July 2020

Topics

- Who cares?
- What is probability?
- Bayesian approach
- Examples
- Frequentist approach
- Summary
- . Will discuss mainly in context of **PARAMETER ESTIMATION**. Also important for **GOODNESS of FIT** and **HYPOTHESIS TESTING**

It is possible to spend a lifetime analysing data without realising that there are two very different fundamental approaches to statistics:

Bayesianism and **Frequentism**.

For simplest case $(m \pm \sigma) \leftarrow Gaussian$

with no constraint on μ_{true} , then

$$m - k\sigma < \mu_{true} < m + k\sigma$$

at some probability, for both Bayes and Frequentist

(but different interpretations)

See Bob Cousins "Why isn't every physicist a Bayesian?" Amer Jrnl Phys 63(1995)398

We need to make a statement about Parameters, Given Data

The basic difference between the two:

Bayesian : Prob(parameter, given data) (an anathema to a Frequentist!)

Frequentist : Prob(data, given parameter) (a likelihood function)

WHAT IS PROBABILITY?

MATHEMATICAL

Formal

Based on Axioms

FREQUENTIST

Ratio of frequencies as $n \rightarrow$ infinity

Repeated "identical" trials

Not applicable to single event or physical constant

BAYESIAN Degree of belief

Can be applied to single event or physical constant

(even though these have unique truth)

Varies from person to person ***

Quantified by "fair bet"

LEGAL PROBABILITY

Bayesian versus Classical

Bayesian

- $P(A \text{ and } B) = P(A;B) \times P(B) = P(B;A) \times P(A)$
- e.g. A = event contains t quark

B = event contains W boson

or A = a random day is in December

B = a random day is rainy

 $P(A;B) = P(B;A) \times P(A) / P(B)$

Completely uncontroversial, provided....

P(parameter) Has specific value "Degree of Belief" Credible interval Prior: What functional form? Uninformative prior: flat? In which variable? e.g. m, m^2 , ln m,...? Even more problematic with more params Unimportant if "data overshadows prior" **Important** for limits Subjective or Objective prior?

Data overshadows prior

Even more important for UPPER LIMITS

Mass-squared of neutrino

Prior = zero in unphysical region

Bayes: Specific example

Particle decays exponentially: $dn/dt = (1/\tau) \exp(-t/\tau)$ Observe 1 decay at time t_1 : $\mathcal{L}(\tau) = (1/\tau) \exp(-t_1/\tau)$ Choose prior $\pi(\tau)$ for τ e.g. constant up to some large τ Then posterior $p(\tau) = \mathcal{L}(\tau) * \pi(\tau)$ has almost same shape as $\mathcal{L}(\tau)$ Use $p(\tau)$ to choose interval for $\tau \rightarrow$ τ in usual way

Contrast frequentist method for same situation later.

Bayesian posterior \rightarrow intervals

Ilya Narsky, FNAL CLW 2000

Upper Limits from Poisson data

Expect b = 3.0, observe n events

P (Data;Theory) \neq P (Theory;Data) HIGGS SEARCH at CERN in 2000

- Is data consistent with:
- Null Hyp: Standard Model, but no Higgs; or
- Alternative Hyp: Standard Model + Higgs?
- End of Sept 2000: Data not very consistent with 'No H'
- Prob (Data ; No H) < 1% valid frequentist statement
- Turned by the press into:Prob (No Higgs ; Data) < 1%</th>and thereforeProb (Higgs ; Data) > 99%

i.e. "It is almost certain that the Higgs has been seen?"

P (Data;Theory) \neq P (Theory;Data) *

* Certainly true for Frequentists, as P(Theory) is not allowed

P (Data; Theory) \neq P (Theory; Data)

- Theory = male or female
- Data = pregnant or not pregnant

P (pregnant ; female) ~ 3%

P (Data;Theory) \neq P (Theory;Data)

- Theory = male or female
- Data = pregnant or not pregnant

P (pregnant ; female) ~ 3% but P (female ; pregnant) >>>3% Example 1 : Is coin fair ? Toss coin: 5 consecutive tails What is P(unbiased; data) ? i.e. $p = \frac{1}{2}$ Depends on Prior(p) If village priest: prior ~ δ (p = 1/2) If stranger in pub: prior ~ 1 for 0(also needs cost function)

Example 2 : Particle Identification

Try to separate π 's and protons probability (p tag; real p) = 0.95 probability (π tag; real p) = 0.05 probability (p tag; real π) = 0.10 probability (π tag; real π) = 0.90

Particle gives proton tag. What is it? Depends on prior = fraction of protons

If proton beam, very likely

If general secondary particles, more even

~ ()

If pure π beam,

Peasant and Dog

- Dog d has 50%
 probability of being
 100 m. of Peasant p
- 2) Peasant p has 50%probability of beingwithin 100m of Dog d ?

Given that: a) Dog d has 50% probability of being 100 m. of Peasant,

is it true that: b) Peasant p has 50% probability of being within 100m of Dog d?

Additional information

- Rivers at zero & 1 km. Peasant cannot cross them. $0 \leq h \leq 1 \, km$

• Dog can swim across river - Statement a) still true

If dog at –101 m, Peasant cannot be within 100m of dog

Statement b) untrue

Classical Approach

Neyman "confidence interval" avoids pdf for μ Uses only P(x; μ)

Confidence interval $\mu_1 \rightarrow \mu_2$:

P($\mu_1 \rightarrow \mu_2$ contains μ_t) = α True for any μ_t

fixed

Varying intervals from ensemble of experiments

Gives range of μ for which observed value x_0 was "likely" (α) Contrast Bayes : Degree of belief = α that μ_1 is in $\mu_1 \rightarrow \mu_2$

Classical (Neyman) Confidence Intervals

Uses only P(data|theory)

 $\mu >$

FIG. 1. A generic confidence belt construction and its use. For each value of μ , one draws a horizontal acceptance interval $[x_1, x_2]$ such that $P(x \in [x_1, x_2] | \mu) = \alpha$. Upon performing an experiment to measure z and obtaining the value x_0 , one draws the dashed vertical line through x_0 . The confidence interval $[\mu_1, \mu_2]$ is the union of all values of μ for which the corresponding acceptance interval is intercepted by the vertical line.

No prior for μ

Frequentism: Specific example

90% Classical interval for Gaussian Measurement x $\sigma = 1$ True value $\mu \ge 0$ e.g. m²(v_e), length of small object

 x_{obs} =3 Two-sided range x_{obs} =1 Upper limit x_{obs} =-1 No region for μ

Other methods have different behaviour at negative x

$\mu_{l} \leq \mu \leq \mu_{u}$ at 90% confidence

Frequentist $\mathcal{\mu}_l$ and $\mathcal{\mu}_u$ known, but random $\mathcal{\mu}_l$ $\mathcal{\mu}_l$ unknown, but fixed Probability statement about μ_{u} and μ_{u}

Bayesian

 μ_{l} and μ_{u} known, and fixed

unknown, and random μ Probability/credible statement about μ

* What it is:

For given statistical method applied to many sets of data to extract confidence intervals for param μ , coverage C is fraction of ranges that contain true value of param. Can vary with μ

* Does not apply to **your** data:

It is a property of the **statistical method** used It is **NOT** a probability statement about whether μ_{true} lies in your confidence range for μ

* Coverage plot for Poisson counting expt Observe n counts

Estimate μ_{best} from maximum of likelihood

 $\begin{aligned} \mathcal{L}(\mu) &= e^{-\mu} \, \mu^n / n! \quad \text{and range of } \mu \text{ from } \ln\{\mathcal{L}(\mu_{\text{best}}) / \mathcal{L}(\mu)\} < 0.5 \\ \text{For each } \mu_{\text{true}} \text{ calculate coverage } C(\mu_{\text{true}}), \text{ and compare with nominal } 68\% \end{aligned}$

Frequentist central intervals, NEVER undercovers

(Conservative at both ends)

Feldman-Cousins Unified intervals

FELDMAN - COUSINS

Wants to avoid empty classical intervals \rightarrow

Uses "*L*-ratio ordering principle" to resolve ambiguity about "which 90% region?" → [Neyman + Pearson say *L*-ratio is best for hypothesis testing]

No 'Flip-Flop' problem

Feldman-Cousins 90% Conf Int for Gaussian

Č)

FIG. 10. Plot of our 90% confidence intervals for mean of a Gaussian, constrained to be non-negative, described in the text.

 $X_{obs} = -2$ now gives upper limit

FIG. 6. Standard confidence belt for 90% C.L. central confidence intervals, for unknown Poisson signal mean μ in the presence of Poisson background with known mean b = 3.0.

FIG. 7. Confidence belt based on our ordering principle, for 90% C.L. confidence intervals for unknown Poisson signal mean μ in the presence of Poisson background with known mean b = 3.0.

Standard Frequentist

Feldman - Cousins

FREQUENTIST

POISON G.B. CONSTRA.

2.01.

45]

Prob

dela

TABLES

TABLE I. Illustrative calculations in the confidence belt construction for signal mean μ in the presence of known mean background b = 3.0. Here we find the acceptance interval for $\mu = 0.5$.

8	$P(n \mu)$	filterat	$P(n p_{best})$	R	rank	U.L.	-
0	0.030	0.	0.050	0.607	6	C'ella	central
9	0.106	0.	0.149	0.768	5		
1	0.185	0.	0.224	0.826	3	V.	V
1	0.216	0.	0.224	0.963	3 2	V	V.
	0.189	1.	0.195	0.966	-	×.	\checkmark
	0.132	2.	0.175	0.753		×.	V
	0.077	3.	0.161	0.480	4	V.	\checkmark
	0.039	4.	0.149	0.259	,	V,	\checkmark
	0.017	5.	0.140	0.121		~	V
	0.007	6.	0.132	0.050		V	1.
6	0.002	7.	0.125	0.018		V	5.
	0.001	8.	0.119	0.006		V,	25:
		Feat	MAN -	co J Sints	3		i.
							< 5!
-	• • •	•••	•••				< 5%
-	•••	•••	•••	•			< 5%

42

FEATURES OF F+C

REDUCES EMPTY INTERVALS (UNIFIED I-SIDED + 2-SIDED INTERVALS ELIMINATES FLIP PLOP NO ARBITRARINESS OF INTERVAL NO ARBITRARINESS OF "READILY" EXTENDS TO SEVERAL K DINENSIONS LESS OVERCOVER MEE THAN "S' AT ENDS" MAY PROS DEUSITY ST. AT ENDS ? NEYMAN CONSTRUCTION => CPU-INTENSIVE (ESP IN SEVERAL DIMEASIONS) MINOR PATHOLOGIES : DISTONT INTERVALS

WRONG BENAVIOUR WRT BED

TIGHT LIMITS FOR 600 90%. Limit b > nobs e.g. 0 3.0 1.08 0 0 2.44

UNIFIED = QUICKER EXCLUSION OF S=0

Standard Frequentist

Pros:

Coverage

Widely applicable

Cons:

Hard to understand

Small or empty intervals

Difficult in many variables (e.g. systematics)

Needs ensemble

Bayesian

Pros:

Easy to understand Physical interval

Cons:

Needs prior

Coverage not guaranteed

Hard to combine

Bayesian versus Frequentism

	Bayesian	Frequentist
Basis of	Bayes Theorem \rightarrow	Uses pdf for data,
method	Posterior probability distribution	for fixed parameters
Meaning of probability	Degree of belief	Frequentist definition
Prob of parameters?	Yes	Anathema
Needs prior?	Yes	No
Choice of interval?	Yes	Yes (except F+C)
Data considered	Only data you have	+ other possible data
Likelihood principle?	Yes	No 46

В	Bayesian versus Frequentism Bayesian Frequentist					
Ensemble of experiment	No	Yes (but often not explicit)				
Final	Posterior probability distribution	Parameter values \rightarrow				
statement		Data is likely				
Unphysical/	Excluded by prior	Can occur				
empty ranges						
Systematics	Integrate over prior	Extend dimensionality				
		of frequentist				
		construction				
Coverage	Unimportant	Built-in				
Decision making	Yes (uses cost function)	Not useful 47				

Bayesianism versus Frequentism

"Bayesians address the question everyone is interested in, by using assumptions no-one believes"

"Frequentists use impeccable logic to deal with an issue of no interest to anyone"

Approach used at LHC

Recommended to use both Frequentist and Bayesian approaches

If agree, that's good

If disagree, see whether it is just because of different approaches