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Motivation

Nonlinear motion afflicts the particle dynamics in two ways

1) Excites resonances
2) Creates an amplitude dependent detuning

Optimization of accelerators requires a machine modeling as
accurate as possible, so one can find a proper strategy to optimize

the machine performances

Goal: retrieving the strength and location of an accelerator nonlinear
components
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Dynamical tune scan method

Outcome: resonance chart
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Static tune scan methods

Based on the dependence of particles tune from magnets the feed-down
WARNING: not to be confused with the amplitude dependent detuning.

Observable: particle tunes ‘ Outcome: modeling of machine nonlinearities
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ldeal Accelerator Model

V, Particle trajectory

Reference orbit

s=0 1. Reference orbit is going through the magnetic
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center of the main magnets.

2. Particles oscillates around the reference orbit
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l[deal dynamics
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The coordinates are measured with respect to the reference orbit



|[deal Particle Dynamics

ESR optics

Particles oscillates

around the reference orbit
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For an off-momentum particle

Chromatic effect
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The coordinates are measured with
respect to the reference orbit




Including localized dipoles

X ESR optics

Dipolar error
or steerer

| /—\ = Reference orbit
\/ Add the kick to the

equation of motion

1" (s) + ky(s)x = 04(s)

The coordinates are measured with
respect to the reference orbit
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Including the nonlinearities

f \
(Lo (1 e [ S5 Eals) +idn(s) ]
Tz T (p(s)2 kl(s)) z = Re 7; 3 (z + 1y)

i
Gt el = I [Z e zy)n]
\ - " y,

The coordinates are measured with respect to the reference orbit
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General equations of motion
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The coordinates are measured with respect to the reference orbit



On-momentum particles



Dynamics around the COD of an
on-momentum beam
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Particles oscillates

Around the closed orbit
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Dynamics of nearby particles to the

closed orbit
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Effect of feed-down components on
particle tunes
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The control of the COD allows, using the tunes measurement, to retrieve information
on the nonlinear error

Linear coupling feed-down errors requires including the normal mode frequency.
How to include this contribution has already been worked out.

Already verified experimentally in SIS18 by A. Parfenova, also tried in SPS
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Off-momentum particles



Including the effect of the dispersion

|dea: study the feed down by controlling the COD via Dispersion

The question is: how do we control the dispersion? Can we ?

N

These questions are the subject of this investigation
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Dynamics of off-momentum particles

X A ESR optics

Closed orbit
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Particles oscillates
around the closed orbit
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The closed orbit

Solution of the equation
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with the periodicity: xo(s) — mo(S 4+ L) this is not the only

condition of periodicity

Yo(s) = Yo(s + L)
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Tune-shift due to the dispersion
closed orbit
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Chromatic contribution Contribution due to sextupoles and
the closed orbit that now is
determined by the dispersion!

Very Problematic

NOTE: changing the quadrupoles will change the dispersion, hence x,
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Tune-shift due the “perturbed”
dispersion closed orbit
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Here XL is the CO when the quadrupoles are perturbed
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The idea is to compare two measurements of an off-momentum beam.

1) One measurement set is for a reference machine settings
2) In a second measurements the quadrupoles are perturbed so to

“deform the dispersion”
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This term is the detuning induced This term is due to the

by the change of one quadrupole closed orbit deformation
and is independent on the _
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nonlinear errors

!

Due to the dispersion change

!

If the change of the closed orbit amplitude
depends linearly on the change of the
guadrupoles there is a chance to have a
method to retrieve the nonlinear errors It depends also from ks(s)

Due to the change of quadrupoles

!
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Can we predict dz,(s) ?

First order contribution

It can be shown that

The function A, (s) is an ”additional” optics function associated to the perturbation
of one quadrupole (the m-th quadrupole).
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TESTS
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coupled in families
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Quadrupoles

ESR
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Ai(s) [m™?]

Example of A,,(s) functions for ESR
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Numerical Tests

Simulation (sim)
compute the tunes via tracking: this is the simulation of the real experiment

1) Compute the closed orbit

2) Set a particle near to the CO

3) Track it for 5000 turns and take coordinates at each turn
4) Make an FFT filtered properly to get high precision tune.

Theory (th)
compute the tunes using optical functions following the theoretical approach

1) Uses global optics properties
2) Make use of the COD --> this requires care to details ....
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With chromaticity corrected
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Ak, @QIF2_2 (m=7)
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Predictivity of the
nonlinear error strength
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Issue: does the presence of the
nonlinear error change z?
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Toward experimental testing @ ESR

Last beam time an experimental campaign has been initiated in ESR

Question investigated: Is it COD induced by dp/p and dk enough to see an effect?

H_COD_MD_GEOIQSIF__
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Toward experimental testing @ ESR

Last beam time an experimental campaign has been initiated in ESR

Question investigated: Is it COD induced by dp/p and dk enough to see an effect?
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Summary and Outlook

For a lattice with chromaticity corrected, perturbing quads yield a detuning that
compared with the unperturbed lattice contains information on the sextupolar
components;

Simulations confirm this very well;

ESR has large momentum acceptance, hence allows testing this approach;

First experimental exploration was initiated last beam time: the big response of the
CO to quad perturbation is very good and promising.

Next step: first benchmarking of tunes versus the ESR measurements, and finding the
next experimental setup for complete experimental validation;

Next? step: disentangling the chromatic effect now included in the tunes so to
retrieve the pure nonlinear contributions also when chromaticity cannot be
compensated.

Final goal, reach improved modeling of the ESR 2nd order nonlinearities, and later

“explore the applicability” of this method to the 3rd order nonlinear components
(very very hard...).
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