

Discussion of suitable diagnostic components for the cSTART project

D. El Khechen, E. Bründermann, S. Funkner, B. Härer, A. Malygin, A. Mochihashi, M. J. Nasse, G. Niehues, A. Papash, R. Ruprecht, J. Schäfer, M. Schuh, M. Schwarz, N. Smale, C. Widmann and A.-S. Müller

www.kit.edu

What is cSTART project?

(M. Schuh's presentation: Status of KIT test facilities and outlook)

- Lattice design of the VLA-cSR (Very Large Acceptance compact Storage Ring) is based on a <u>FODO cell where magnets are very</u> <u>close to each other</u>
- In total four drifts: One for injection, one for physics experiments and two for beam diagnostics

Parameters of the VLA-cSR:

2

Circumference (m)	44.112	A CONTRACTOR OF
Energy (MeV)	50 (– 500)	
Filling pattern	single bunch	
Bunch charge	20 – 200 pC up to 1 nC –	Very senstive, high dynamic
Bunch length (fs)	down to 20	range beam diagnostics
Revolution frequency (MHz)	6.8 —	Fast readout electronics

Aims and Requirements:

- Commissioning aim: Store the beam for about 1000 turns in the VLAcSR
- Requirement: A turn-by-turn orbit feedback system with a beam position precision of at least 100 µm
- The beam diagnostic studied so far are beam position monitors (BPM), current monitors (CM), longitudinal profile monitors (LPM) and beam loss monitors (BLM)
- Few of them are being used and tested at IBPT's facilities (KARA, FLUTE)

ICT: Integrated Current Transformer SRR: Split Ring Resonator EOSD: Electro Optical Spectral Decoding

Beam diagnostics	BPM	CM	LPM	BLM
Comparison	Button ♀ (signal deformation with short bunches) Cavity ↓ ↓ (repetition rates?, space limitation) Stripline ⓒ (insertion inside quadrupoles, and could be used as combined function as a position monitor and a kicker)	Turbo-ICT X (limited to rep rates of 2 MHz due to its readout electronics BCM-RF-E) (a slight development might be possible to cope with 6.8 MHz) ICT (Conternor (faster than turbo- ICT at 6.8 MHz but maybe noisy especially at low bunch current)	Streak camera (bad resolution 1 ps) (as an input to a feedback system to correct for possible coherent bunch oscillations) SRR (destructive method, limited by very small beam sizes though could provide resolutions better than 20 fs) EOSD (romising method, near field and far field approaches, 50 fs resolution)	Scintillators (small sizes, flexible positioning, on the fly beam loss feedback) Optical fiber. (very precise information on the loss position, installed overall the ring, need to study the secondary particles energies)

Many thanks for your attention