

Digital LLRF at ELBE: Performance and first impressions of user operation

Klaus Zenker, ARD ST3 Workshop, 24.09.2020

HELMHOLTZ

Member of the Helmholtz Association Klaus Zenker | Institute of Radiation Physics | http://www.hzdr.de

ELBE – Center for high power radiation sources

e⁻ flow since almost 20 years

Characteristic:

- Multi-source facility
- Pulsed and CW mode operation

Example beam parameter:

- \blacksquare Beam energy: $8\,{\rm MeV}$ to $40\,{\rm MeV}$
- \blacksquare Average beam current: $1600\,\mu A$

Accelerator

Cavity powering at ELBE

Individual SSPAs allow single cavity control in cw mode!

Components of the digital LLRF at ELBE

Hardware:

Rear Transition Module (RTM)

Advanced Mezzanine Card (AMC)

- Master oscillator: 1.3 GHz (REF), 260 MHz (REF), 78 MHz (CLK)
- UniLOGM: 8×LO (1.3 GHz+54¹/₆ MHz), 8×CLK (65 MHz), 8×REF (1.3 GHz))

Software:

- Firmware for struck boards ⇒ LLRF controller (adopted for cw operation in collaboration with DESY)
- Control software for the LLRF ⇒ ChimeraTK (together with DESY)
- Adapter for ChimeraTK that is compatible with WinCC ⇒ OPC-UA Adapter (TU Dresden, now IOSB Karlsruhe)

Out of loop measurement of Amplitude Modulation and Phase Noise

Out of loop: Measurement of the probe signal with respect to the internal reference of the signal source analyser.

 Includes all noise sources in the control loop Excludes noise from the master oscillator

Noise measurements

SRF cavity amplitude modulation (gain: 40, $6 \,\mathrm{MV}$)

Int. abs. AM: 0.0066% (dLLRF), 0.0085% (aLLRF) $\Rightarrow < 0.01\%$ (TARLA/MESA requirements)

Member of the Helmholtz Association

Noise measurements SRF cavity phase noise (gain: 40, 6 MV)

■ Int. abs. PN: 113 fs (dLLRF), 109 fs (aLLRF) ⇒ additional noise of $23 \text{ fs} \rightarrow 0.01^{\circ}$ (TARLA/MESA)

Longterm drifts

Observation:

- Already when the aLLRF is operated a drift of the amplitude/phase signals is observed with the dLLRF system
- The drift correlates with the temperature in the dLLRF rack
- \Rightarrow Peak-to-peak temperature oscillation of $1\,\mathrm{K}$ introduced by the rack cooling

Reference tracking

Idea:

- Measure the reference signal with the dLLRF system
- Assumption: Reference amplitude and phase are stable
- Use changes seen on the reference signal to correct probe, forward and reflected signals
- \Rightarrow Compensate temperature/humidity changes in the dLLRF rack

Reference Tracking

Improved energy stability reduced from \$\frac{\delta E}{E}\$ = 0.3 % to 0.05 %
Caused by cooling water temperature oscillations

On the way to user operation

Solved issues:

- Attenuator setting
- Controller design
- Broken connections to the SCADA system (WinCC)
- System calibration with respect to the aLLRF
- Limiter configuration
- Modification of the ramp up procedure
- Optimized ramp up procedure:
 - Ramp in closed loop
 - Update OVC during ramping
- Improved machine protection:
 - Forward firmware state to the machine protection via front panel AMC outputs
 - Use additional limiter on the VM signal to introduce intrinsic safety functionality (independent of the probe, forward, reflected signals that could be disconnected)

User operation

Overview:

- Since August 2020 all ELBE beam paths/experiments were operated using the dLLRF
- Settings were prepared for aLLRF and dLLRF
- Turned out to be most practical to prepare the setting using the aLLRF and than switch to dLLRF \Rightarrow just takes a few minutes
- Probe read back values can be used to setup the dLLRF while aLLRF is in operation ⇒ the machine is in the exact same state after switching to dLLRF
- Switching from dLLRF to aLLRF is not that straight forward (mechanical phase shifter, remaining controller error)

Issues during user operation

 $1.3\,\mathrm{GHz}$ phase shifter:

- Affected the 1.3 reference amplitude used by the dLRLF (aLLRF is not sensitive to amplitude changes)
- Problem for the reference tracking
- \Rightarrow Removed this phase shifter from the dLLRF path
 - Implemented a virtual phase shifter + arbitrary virtual phase shifter by combining different phases (e.g. LA2 phase)

Issues during user operation

 $1.3\,\mathrm{GHz}$ phase shifter:

- Affected the 1.3 reference amplitude used by the dLRLF (aLLRF is not sensitive to amplitude changes)
- Problem for the reference tracking
- $\Rightarrow\,$ Removed this phase shifter from the dLLRF path
 - Implemented a virtual phase shifter + arbitrary virtual phase shifter by combining different phases (e.g. LA2 phase)

Issues during user operation

 $1.3\,\mathrm{GHz}$ phase shifter:

- Affected the 1.3 reference amplitude used by the dLRLF (aLLRF is not sensitive to amplitude changes)
- Problem for the reference tracking
- $\Rightarrow\,$ Removed this phase shifter from the dLLRF path
 - Implemented a virtual phase shifter + arbitrary virtual phase shifter by combining different phases (e.g. LA2 phase)

Reference tracking:

- Remaining energy drift is seen on the BPMs and e.g. FEL power
- For some beam paths we can activate an energy stabilization based on the BPM position measured in a dispersive section ⇒ not possible for all beam paths
- LLRF trigger bind to the marco pulse:
 - In combination with the with SRF gun (should only be operated at $5\,{\rm Hz}$ in macro pulse mode) slow operation of the dLLRF
 - ⇒ Will be solved with the new timing system that is under development (COSYLAB)

Future features

- **1** Measure the cavity detuning in cw mode
 - Andrea Bellandi (DESY) is implementing a dedicated algorithm in the LLRF firmware
 - First tests at ELBE were done \Rightarrow The algorithm is not yet ready
- 2 Advanced Beam Based Feedback
 - See talk by Andrei Maalberg
- 3 Second tone based drift compensation
 - Once available at DESY
- Improve ramp up procedure
 - Use table sequence to speed up ramping
 - Possibly compensate detuning during ramp up via phase rotation $A\sin(\omega t) \rightarrow A\sin(\omega t + \phi(t))$

cw mode rampup using table sequence

- Currently we update the setpoint with every macro pulse ⇒ steps need to be small enough to not trigger a window interlock and the maximum macro pulse rate is 25 Hz
- Combine two tables in a sequence to ramp up in cw mode

- Using a table sequence allows to ramp up the cavity field way faster
- Table sequences in combination with a firmware based detuning compensation via a phase rotation would be most useful for SRF gun operation (significant Lorentz force detuning)
- \Rightarrow This requires a change of the firmware

Summary

Digital LLRF at ELBE:

- In user operation since August without major problems
- First cw machine using the MicroTCA based digital LLRF system
- Huge improvement in terms of system flexible compared to the previous analogue system
- Performance of the dLLRF is good and meets requirements of future cw machines like MESA and TARLA
- We demonstrated a possible implementation for DALI

Acknowledgements:

We thank DESY for the close collaboration in firmware and software development and general support.

Backup

Member of the Helmholtz Association Klaus Zenker | Institute of Radiation Physics | http://www.hzdr.de

Beam based feedback

- Diagnostic crate design and firmware
- ChimeraTK diagnostics application
- Feedback controller

Member of the Helmholtz Association Klaus Zenker | Institute of Radiation Physics | http://www.hzdr.de

LLRF controller

- Per cavity/buncher: forward, reflected, probe, reference are sampled
- Control loop is based on vector sum signal \equiv probe signal
- Remote control and DAQ via ChimeraTK LLRF server (developed at DESY)

Integration into ELBE infrastructure

HZDR