Facility Report DESY

ARD-ST3 Annual Meeting 2020

Holger Schlarb, Group Leader MSK/DESY KIT, Karlsruhe, 23. September 2020

- PETRA III / PETRA IV new: Riccardo Bartolini
- FLASH / FLASH2020+ new: Enrico Allaria
- European XFEL

- PITZ → see Mikheil Krasilnikov
- ARES/ATHENAe

 \rightarrow see Florian Burkard

PIV Project Management

FLASH2020+ Project Management

DESY activities : birds view ...

PETRA III / IV

PETRA III

Parameter	PETRA III			
Energy / GeV	6			
Circumference /m	2304			
Emittance (horz. / vert.) /nm	1.2 /	0.012		
Total current / mA	100			
Number of bunches	960	40		
Bunch population / 10 ¹⁰	0.5	12		
Bunch separation / ns	8	192		

Damping Wigglers: B ~ 1.5 T, λ = 0.2 m 2 x 10 x 4 m = 80 m ϵ_x : 5 nm \rightarrow 1.2 nm

To beam line P61

PETRA IV

- Conceptual Design Report Completed
 - Scientific case developed with the help of the user community (> 700 participants in 13 workshops, KFS support)
- Technical Design Report started 01/2020
 - Defined work packages & start hiring process

Upgrade of PETRA III to the Ultimate 3D X-ray Microscope Conceptual Design Report

Deutsches Elektronen-Synchrotron DESY A Research Centre of the Helmholtz Association

DOI: 10.3204/PUBDB-2019-03613

DESY.

7

PETRAIN Paul P. Ewald Max von Laue hall FLASH Ada Yonath hall Ada Yonath

Figure 1.1.: *PETRAIV storage ring and accelerators. The new experimental hall in the west is located largely underground.*

Parameter	PETR	PETRA III		
	Brightness mode	Timing mode		_
Energy / GeV	6	6	6	-
Circumference / m	2304	2304	2304	
Total current / mA	200	80	100	-
Number of bunches	1600	80	40 960	_
Emittance				-
Horiz. ϵ_x / pm rad	< 20	< 50	1300	x 65
Vert. ϵ_y / pm rad	< 4	< 10	10	x 2.5
Number of undulator beamlines	30		21(26)	-

- > 150 improved emittance/ diff. limit at 1 \AA
- Demanding schedule (~2 yr dark time)
- Public: <u>www.desy.de/petra4</u>

PETRA IV

 Diffraction-limited photon energy for syncr. rad. Sources and there upgrades

Science City Bahrenfeld

PETRA IV

New hall (covered)

PETRA IV: lattice design

CDR baseline (optimized) lattice used in engineering integration

→ Booster lattice currently finalized

- Hybrid 7BA cell (26.2m)
- No reverse bends
- > 4 optimized "super-IDs" with $4m \beta$

Further optimizations ongoing:

- Improvement DA/MA
- Increase Touschek lifetime (timing mode)
- Photon extraction beamlines
- Reduce gradients Q,Sex,Oct

& Combi-lattice is investigated

Courtesy: I. Agapov

PETRA IV: challenges

• Short & long term stability ... ~ 10% of beam size

... and many more e.g. 2000 magnets + PS, first turn, diagnostics, logistics,

FLASH Layout

DESY.

FLASH Parameters

No changes in parameters

DESY.

http://photon-science.desy.de/facilities/flash/publications/scientific_publications

FLASH 2020+ Conceptual Design Report

A concept to secure a bright future for the next decade

FLASH2020+ Conceptual Design Report
 → Science case & facility upgrade

Board of Directors ientific Advisory Board LAC, MAC, PSC W. Leemans, E. Weckert Executive Project Team E. Allaria (Project Leader), Lucas Schap M. Beye, I. Hartl, S. Schreiber Photons FEL De Seeding Accelerator Technical Infrastructure Management Subsystems S. Toleikis. velopments L. Schaper J. Zemella J. Müller-K. Tiedtke . Schneidmille iekmann,O. Rasi M1 Safety A1 Photoin-M. Yurko S1 Seed-M. Döring, P1 Photon iector Lasers T1 Accelerator ing Design 11 Infrastruc-B. Racky **Beamlines** F1 Atto-second and Beamline Modules ture Tunnel S. Ackerman E. Vogel, Schemes L. Winkelmann G. Brenner O. Rasmussen M2 Controlling at FLASH2 E:Plönies-Palm S2 Laser K. Jensch K Darame Systems A2 Laser Heater 2 Infrastructur N N T2 RF-Stations M. Gorka-Bui C. Gerth, T. Lang Experimen-P2 Photon and Waveguides F2 New Lasing J. Zemella tal Halls Diagnostics M3 Accelerator Concepts and S3 Laser T. Frölich, J. Müller-M. Degenhardt A3 Electron Management Experimental B. Yildirim Beamline Diekmann M. Braune Studies Beamline K. Honkavaara, M. Kazemi A. Brinkmann N.N. J. Zemella, T3 Electron 13 Safety P3 Pump-Probe M. Vogt Vacuum S4 Undulator Infrastructure Laser Systems -3 Short Term M4 Sus and Modulators S. Lederer, A. Jung B. Manschwetus Upgrades tainability M. Tischer A4 Longitudinal A. Wagner FLASH2 K. Schulz P4 Pump-Probe Diagnostics **I4** Radiation N.N. S5 Undulator C. Gerth, T4 Electron Protection Laser Delivery Intersections F. Christie Diagnostics A. Leuschner B. Manschwetu and Phase N. Baboi Shifters A5 THz P5 THz **15 Radiation** Beamline and J. Zemella, undulator and T5 Synchro Protection Dumpline M. Tischer nization and Interlock Endstation M. Vogt, R. Pan Fast Feedbacks M. Dresse R. Pan. 1 Müller E:Plönies-Palm 16 Installations A6 Afterburner M. Czwalinna N. Mildner F. Christie P6 Photon T6 Controls M. Tischer Beamlines and DAQ 17 Survey Vacuum and A7 Operational T. Wilksen J. Prenting Technology Aspects H. Schulte-T7 Magnets 18 Electrical Rönsch-Schrepping B. Krause Power, Water, Schulenburg Air-Conditioning P7 Overall T8 Magnet J. Eckholdt Synchronization Power Supplies S. Schulz, 19 IT-A. Hauberg S. Düsterer Infrastructure T9 Kicker T. Ladwig Systems F. Obier **110** Cables H. Sokolinski I11 BAU M. Müllner. M. Vialis Kula, NN

Project Structure established

•

User Requirements vs. upgrade plans

Dream facility expressed within the "Future of Science at FLASH" Workshop Sept. 25-27, 2017

Dream Facility	FLASH2020+ Goals	FEL Line
Fundamental up to O-K-edge	Extend wavelength range of the fundamental → novel undulator schemes, increase beam energy	FLASH2
Variable polarization	Variable polarization (FL2 with afterburner)	FLASH1 and 2
Flexible pump-probe schemes (THz \rightarrow XUV)	Provide flexible laser- and FEL based schemes for multi-color pump-probe experiments	FLASH1 and 2
Fourier-limited pulses (transverse and longitudinal)	Laser manipulate electron bunches in burst mode with up to 1 MHz rate \rightarrow external seeding with high rep. rate	FLASH1
Few fs- and sub-femtosecond pulses	Enable dynamic studies with sub-femtosecond to attosecond precision	FLASH2
100 kHz cw		FLASH@XFEL

Courtesy: S. Schreiber

FLASH2020+ will be executed in four phases

Initial upgrades were started 3 years ago and funding for full project secured in 2019/2020

Parameter Space FLASH2020+

The first seeded high repetition rate XUV and soft X-ray FEL

	FLASH1 (Seeded)	FLASH1 (SASE)	FLASH2				
Wavelength range	4 - 60	4 - 60	1.3 - 60*	nm			
Pulse energy	<100	<1000	<1000	μJ			
Pulse duration (FWHM)	30***	5 – 200	0.1 – 200	fs			
Spectral width	Fourier limited	0.5 – 2	0.5 – 2	%			
Pulses per second**	10 - 5000	10 - 5000	10 - 5000				
* including third harmonic ** to be shared between FLASH1 and FLASH2 (goal: 1 ms RF pulse length) *** from 23 fs @ 4nm \rightarrow 45 fs @ 60 nm							

Courtesy: S. Schreiber

FLASH2020+ Seeding is a central component for the project

Basic layout of the FLASH1 seeding section is being designed

Courtesy: S. Schreiber, E. Allaria

DESY.

European XFEL

The European XFEL between Hamburg Bahrenfeld and Schenefeld

- Super conducting accelerator with up to 17.5 GeV electron beam energy.
- Three undulator beamlines in two branches (north and south).
- In total 6 experiments, 4 for hard X-rays and 2 for soft X-rays, potential for 2 more FELs

opyright: DESY

The longest superconducting linac in the world is in operation

- 96 superconducting modules in a single cryostat in the main tunnel
- plus 2 injector modules
- RF components and electronics rack are located below the accelerator.

(Accelerator) Parameter Space (as of Today)

Quantity	Unit	Project Goal	Achieved	Routine
electron energy	GeV	8 – 17.5	6 – 17.5	14
bunch repetition within pulse	MHz	Up to 4.5	Up to 4.5	1.13 - 4.5, plus subharmonics
bunch charge	рС	20 – 1000	100 – 500	250
max. beam power	kW	500 kW	80 kW	40 kW
undulators in operation (lasing)		SASE1-3	SASE1-3	SASE1-3
photon pulses / s / undulator		27000	5000	<3000 <
photon energy	keV	0.25-25	0.4-4.5; 5.8-20	0.6-2.2; 6 – 14
photon pulse intensity (SASE1) @ 14 GeV, 250 pC, 9.3 keV	mJ		4	2
photon pulse intensity (SASE3) @ 14 GeV, 250 pC, 600 – 900 eV	mJ		10	>5
photon pulse intensity SASE2 (@ 14 GeV, 250 pC, 9 keV	mJ		3	2

Stand: 17.09.2020

- Equal intensity on SA1/SA2
- Remaining challenge (for both hard X-ray undulators):
 - Photon energy scaling
 - keV steps still require re-tuning air coils and phase shifters
- Pre-prepared files, but this reduces flexibility
- Trade off between peak power and tunability

□ ... it is difficult to keep this performance level in delivery mode, with frequently changing settings

LINAC Improvement: Piezo Operation

Piezo operation commissioning

- □ Technical commissioning
- □ Software commissioning
- Integration with cavity tuning

□ Benefits of piezo operation

- □ More efficient use of available klystron power
- □ More **stable** operation **close(r)** to quench limit
- Piezo tuning range allows for 100-200 MeV change without having to retune cavities with slow tuners

gradient

→ operation more robust reliable operation at high gradients AND ...

K-Mono: Middle plain corrections -> Applied for SASE1/2

Enable K-Mono Device

Scan for Minimum K for Each Undulator on BBA Orbit

Involves:

- K-Mono Operation
 Undulator Controls
 Different Bridges between DOOCS & Karabo
- Still Expert Work

Print to xfellog Print to file Load Pic Save Pic 2020_07_13_10-18-54

K-Mono: After Middle Plain Correction, measure K-Offsets along the Undulator

Two Measurements:

- Uncompressed
 - K-Offsets along Undulator
 - Weak wakefield effects (energy loss)
- Compressed
 - K-Offsets along the Undulator
 - K- Slope due to strong wakefield effects
 - Indication for Linear Taper

LINAC Availability (Summer start-up and study time)

- LINAC **RF availability** generally very good
 - Generally > 98%
- Most trips < 2' and automatically recovered
 - LLRF triggered (e.g. Q-detect)
 - Klystron gun arcs
- Automated tools for availability analysis
 - Database driven
- Weekly meetings to discuss trips

Quality Assurance – 8 D Processes

Criteria: Duration, Severity, Occurrence

Status of report	s						2	020	
		2019			open	closed		canceled	
		open	closed	canceled	_		int.	ext.	
8D-Reports		1	14	1		10	- 4	0	0
4D-Repots		0	2	0		2	1	0	0
	Σ	1	16	1	Σ	12	5	0	0

Tabelle 2.1: Bearbeitungsstand sämtlicher 8D- und 4D-Reports für 2019 und 2020 im Bereich MXL + XFEL

Status of actions 2019 Datum: 10.09.20 on hold Total tbd overdue canceled done open 2 8D-Reports 1 82 87 0 0 2 4D-Repots 0 0 0 0 0 6 6 Σ 1 2 0 0 2 88 93 2020 on hold canceled Total tbd overdue done open 32 8D-Reports Q 0 1 5 51 98 10 4D-Repots 2 0 0 2 14 Σ q 34 0 1 7 61 112

Tabelle 2.2: Bearbeitungsstand sämtlicher 8D- und 4D-Reports für 2019 und 2020 im Bereich MXL + XFEL

2019:

□ 18 reports triggered , 16 closed

93 preventive measures defined, 88 executed 2020:

- **17** Reports triggered, 5 closed
- □ 122 preventive measures defined, 61 executed

Thanks to

Siggi Schreiber, Riccardo Bartolini, Ilya Agapov, Winni Decking, Dirk Noelle, Enrico Allaria, and many more

for material