

Fast MHz Helicity flipping at BESSY

Alternating the Helicity of X-Ray Photons from an Undulator at Unprecedented Speed

with **TRIBs**

P. Goslawski et al. Institute for Accelerator Physics Helmholtz-Zentrum Berlin

- TRIBs
 - Summary/History up to now
- MHz Helicity Flipping at BESSY II
 - For XMCD experiments (e.g., PEEM)
- Summary and Conclusions

TRIBs – Working point "on" resonance

Transverse Resonance Island Buckets - TRIBs - at BESSY II

- Operating machine close to horizontal 3rd order resonance
- Tackle non-linear beam dynamics
- Minor impact on linear beam optics expected

2nd stable fix point & orbit

P. Goslawski, TRIBs

23/24th September 2020, ARD ST3 Meeting, online, Karlsruhe, Germany

HZB TRIBs Summary/History

2015	1 st TRIBs machin	e exp at MLS	PB	SB in Island	MB in Island
	Followed by first	tests at BESSY II	Physikalisch-Technische Bundesanstalt Braunschweig und Berlin		
2016	High current operation at BESSY II, closed IDs 1 st commen exp. with beamline scientist Radiation from 2 orbits usable?			time (ns)	
2017	First TRIBs user Single island pop to extend the rep	experiment at MLS pulation petition rate	REVIEW OF SCIENT Transverse resonance island bud electron time-of-flight spectrosci T. Arion, ¹ W. Eberhardt, ¹² J. Feikes, ³ A. M. Kolbe, ⁴ J. Li, ³ C. Lupulescu, ² M. Riu T. Tydecks, ³ and G. Wüstefeld ⁹	TTIFIC INSTRUMENTS 89, 103114 (2018) ckets for synchrotron-ra opy . Gottwald, ⁴ P. Goslawski, ³ A. Hoel chter, ^{4,a)} M. Ries, ^{3,b)} F. Roth, ^{5,c)} M	
	TopUp injection into TRIBs setting at BESSY II @ high current			100% 30% 90% 100% 50% 30% 30% 30% 30% 30% 30% 30% 30% 30% 3	Change to revises and ne optimisation
2018				100%	Scientists - Current - Signal - Current - Injection Efficieny - Trible Signal - Current - Injection Efficieny - Trible Signal Tu Oéh
	TwoOrbit / TRIBs 3 days of exp, 4	s User Test Week days user run	Twin orbit user test user shift 201 Januari MC MC MB 1 2 3 4 5 6 7 8 9101112 1314 15	17 / 2 uary 3 4 MB MB 16 17 18 19 20 21 22 23 24 25 20 Two C KW08 20	HOL, Berlin, August 2011 Paul Gostewekt, <u>and Audoreck Hildenbolt Jerlin</u> of Party and Conclusions of the Drbit / TRIBs User Test Week 2018, 19. – 25. 02.2018
2019	XMCD@TRIBs BESSY II exp	TRIBs at other Ri DELTA & MAX IV	2017 /2 February 5 6* 7* MB 58 MC 1 2 3 4 5 6 7 8 9 1011 2213 14 5 11	2018 / 1 y 8 * T0 16 17 19 20 21 22 23 24 25 21 D0 efficiency to tags/	n. M. Brestish, K. Medginek, M. Libner, G. Schöchere, K. Holdberk, G. Schönerk, W. Gregorie, Lewis, P. Gorman, J. Miregard, E. Schörker, V. Kolkerk, P. Kostenk, S. Kostenk, S
	TRIBs workshop Accelerator scier	at HZB / BESSY II ntists		Nexted Internet	See BESS https://www.helmholt

23/24th September 2020, ARD ST3 Meeting, online, Karlsruhe, Germany

HZB TRIBs Summary/History

XMCD@TRIBs at BESSY II

MHz Helicity Flipping

ARTICLE

Check for updates

8

https://doi.org/10.1038/s42005-020-0331-5 OPEN

Flipping the helicity of X-rays from an undulator at unprecedented speed

Karsten Holldacko ¹⁵³, Christian Schüssler-Langeheine¹, Paul Goslawski¹, Niko Pontius¹, Torsten Kachel¹, Felix Armborsto¹, Markus Ries¹, Andreas Schälicke¹, Michael Scheer¹, Winfried Frentrup¹ & Johannes Bahrdt¹⁵³

X-ray circular dichroism (XMCD), one of the main tools to study magnetism, benefits enormously from the capability of a fast alterable helicity of circularly polarized X-ray photons. Here we present a method for boosting the alternating frequency between right- and left-handed photons to the MHz regime, more than three orders of magnitude faster than state-of-the-art technologies. The method is based on a twin elliptical undulator installed in an electron storage ring being operated in a novel mode where the electron optics is tuned close to a resonance with electrons captured in transverse resonance island buckets. Propagating through the twin undulator, electrons from different islands emit photons of the same wavelength but of opposite helicity. These two helicity components can be alternated as fast as 2 ns. In a proof-of-principle experiment at BESSY II, we demonstrate XMCD at the $L_{2,3}$ absorption edges of Ni with an 800 ns helicity flip.

KW44, Calender Week 44, 26.10. - .11.2020

-> The next Two Orbit / TRIBs User Week

A normal user week from Tuesday afternoon / evening on !

K. Holldack, J. Bahrdt et al.

XMCD @ TRIBs at BESSY II: Fast helicity switching

- X-ray magnetic circular dichroism (XMCD)
 - is a important application at synchrotron facilities to study magnetic properties (spin & orbital magnetic moment) of probes (magnetic recording materials, quantum materials, clusters, spintronics & catalysis)
 - different absorption of polarized X-rays on atomic orbitals, in case of transition metals (iron, cobalt, nickel: 700-900 eV) measured at L-edge
 - fits perfect to BESSY II, because of our UEXX (elliptical APPLE II)
 - Studies of dynamical process and experiments addressing small effects like in molecular spin systems, on surfaces, spatially resolved magnetic domains and quasi-particles in solids would benefit enormously from the capability of a fast alterable helicity switching: S/N ratio ~ switching freq.
 - In the soft X-ray regime polarization must be flipped within the undulator
- Double undulator systems with static orbit bumps and chopper (~100 Hz)
 Helicity switching of circularly polarized undulator radiation

Fig. 2. Electron beam orbit bumps A (broken line) and B (dotted line) generated by five kicker magnets (top view). When orbit bump A (B) is generated, left (right) circular light is emitted on axis and supplied to the beamline.

Method: XMCD

X-ray Magnetic Circular Dichroism

с		Station	Energy Range	Polarisation	Beamline	Contact
		ALICE	20 - 1900 eV	• horizontal • circular	Soft X-ray dipole variable polarisation with PGM open port + scattering chamber	
Trap	85		85 - 1600 eV	horizontal	U49-2_PGM-1 Undulator PGM horizontal polarisation	
o ec	f Ig	е	100 - 1500 eV	variable	Soft X-ray undulator radiation variable polarization with SGM and resonant bunch excitation for open	
	120 eV 20 191		60 - 1300 eV	• linear horizontal vertical • circular	Soft X-ray fs-to-ps pulsed undulator radiation variable polarization with PGM for FEMTOSPEX Surface	
	85 16(60 - 1300 eV	• horizontal • vertical • circular	UE56-2_PGM-1	
	100		60 - 1300 eV	• horizontal • vertical • circular	UE56-2_PGM-2	
	20 69 20		20 - 690 eV	variable	XUV undulator radiation variable polarization with PGM for meV RIXS + open port	
	191		eV		search a beamline for me	
	85 160 100 150	FEMTOSPEX- DynaMax	410 - 1333 eV	variable	Soft X-ray fs-to-ps pulsed undulator radiation variable polarization with Zone Plate Mono for FEMTOS	Christian Schüßler- Langeheine Niko Pontius Karsten Holldack
60 131						Torsten Kachel
	20 69	FEMTOSPEX surface dynamics	60 - 1300 eV	 linear horizontal vertical circular 	Soft X-ray fs-to-ps pulsed undulator radiation variable polarization with PGM for FEMTOSPEX Surface	Nomi Sorgenfrei Hikmet Sezen Erika
	10 18 eV					Giangrisostomi Stefan Neppl
	10 18 eV	High-Field Diffractometer	120 - 2000 eV	 linear any angle (with restrictions) circular 	UE46_PGM-1	Eugen Weschke Enrico Schierle
sion	20 191	LEEM-PEEM	55 - 1500 eV	• horizontal • vertical • circular	UE56-1_SGM	Stefan Cramm
	85 161 6 -	MAXYMUS	150 - 1900 eV	Horizontal, Vertical, Circular positive, Circular negative	UE46_MAXYMUS	Michael Bechtel
	eV					
	10 15	VEKMAG	eV	Circular, Horizontal	Vektor Magnet	Florin Radu

P. Goslawski, TRIBs

by local orbit bumps

TRIBs Experimental Applications: Fast helicity switching

K. Holldack, J. Bahrdt et al.

K. Holldack, J. Bahrdt et al.

P. Goslawski, TRIBs

K. Holldack, J. Bahrdt et al.

As detector a fast Avalanche Photo Diode (APD) was used and the signal from 1st and 2nd revolution have been sorted by a digital oscilloscope.

K. Holldack, J. Bahrdt et al.

To demonstrate an usual XMCD measurement at the selected settings, the mean values of the signals from the 1st and 2nd gate-windows from the previous figure are now displayed during an energy scan (combined undulator-monochromator ride with magnetic field alternation).

The XMCD difference-over-sum signal clearly shows that the helicity is reversed between the two turns.

Turn-By-Turn flip ~ 1.25 MHz of the X-ray helicity from an undulator at an electron storage ring

TRIBs Experimental Applications: Fast helicity switching

MHz-fast Helicity Flipping of Undulator Radiation

 Proof of principle of a turn-by-turn flip (of 800 ns) of the X-ray helicity from an electron storage ring, which is the highest alternation frequency of 1.25 MHz ever reported.

TRIBs for
1) BESSY II 2) BESSY III
3) others?

- Demonstrated a stable operation of a light source in TRIBs setting combined with state-of-the-art helical undulator technology and successful fast magnetism experiments behind a beamline.
- The method if improved opens new magnetism experiments towards tiny magnetic moments, microscopy and MHz dynamics
- We believe that **ultra-low emittance light sources** with tailored IDs might be suited to improve and use our method in the future

Fore more details see:

K.Holldack, C. Schüssler-Langeheine, P.Goslawski, N.Pontius, T.Kachel, F.Armborst, M.Ries, A.Schälicke, M.Scheer, W.Frentrup, J.Bahrdt

Flipping the helicity of X-rays from an undulator at unprecedented speed, Comm.Phys. **3**, 61 (2020), https://www.nature.com/articles/s42005-020-0331-5.pdf or https://doi.org/10.1038/s42005-020-0331-5

Thank you for your attention

Thanks to all internal and external Colleagues & Users contributing to TRIBs

P. Goslawski, TRIBs

23/24th September 2020, ARD ST3 Meeting, online, Karlsruhe, Germany

References

K. Holldack et al., *Flipping the helicity of X-rays from an undulator at unprecedented speed*, Comm.Phys. **3**, 61 (2020), https://www.nature.com/articles/s42005-020-0331-5.pdf or https://doi.org/10.1038/s42005-020-0331-5

P. Goslawski et al., "Two Orbit Operation at Bessy II - During a User Test Week", Proceedings of IPAC2019, Melbourne, Australia, THYYPLM2, doi:10.18429/JACoW-IPAC2019-THYYPLM2

P. Goslawski et al., "Summary and Conclusions of the Two Orbit /TRIBs user test week", HZB Report 2018, https://dx.doi.org/10.5442/r0003

F. Kramer et al., "Characterisaton of the second stable orbit generated by transverse resonance island buckets (TRIBs)", Proceedings of IPAC2018, Vancouver, BC, Canada, TUPML052

P. Goslawski et al., "Status of Transverse Resonance Island Buckets as Bunch Separation Scheme", Proceedings of IPAC2017, Copenhagen, Denmark, WEPIK057

P. Goslawski et al., "Resonance Island Experiments at BESSYII for User Applications" Proceedings of IPAC2016, Busan, Korea, THPMR017

M. Ries et al., "Transverse Resonance Island Buckets at the MLS and BESSY II" Proceedings of IPAC2015, Richmond, VA, USA, MOPWA021 $\,$

Team

Accelerator group: Felix Armborst (Kramer), P. Goslawski, M. Ries, G. Schiwietz, G. Wüstefeld

Beamline Scientists and Users:

K. Holldack, F. Kronast, R. Ovsyannikov, E. Schierle, G. Schönhense and others

Acknowledgement

- G. Wüstefeld for all his support... and VSR and TRIBs
- G. Schönhense for the few bunch mode and his TRIBs motivation

S. Khan and A.S. Müller for our Proposal: TiMo – Timing Modes for Advanced Lightsources

D.K. Olsson, Å. Anderson & P. Tavares for the opportunity to test at MAX IV's 3 GeV MBA ring.

K. Holldack, J. Bahrdt et al.

XMCD effect was detected in Permalloy sample $(Ni_{80}Fe_{20})$ at the Ni L₃-edge magnetized along the beam direction using an electromagnet. Shifts/Helicity have been changed between a & b Distance between the two spots 3.7 mm.

horizontal image of the source point in the high beta section onto the sample at a slight magnification of M = 1.049.

- Decreasing repetition rate at small storage rings for TOF exp. •
- **Proof-of-principle User Experiment at the MLS** ٠ (see T. Arion et. al., Rev. Sci. Instrum. 89, 103114 (2018))

Streak camera with aperture

Current manipulation, sub-revolution frequency

- How to populate only one island?
- Non linearity of stripline kicker
- Kick (or pause) every 3rd turn: 2.083 MHz instead of 6.25 MHz pause-pause-kick

Streak camera with aperture to select photons of one island

a) islands equally populated, kick every turn
 b, c) only single island populated, pause-pause-kick
 kick every 3rd turn

Signal measured at ID beamline with channeltron

NRZ • Amplitude • Zee 34 ZE E Ze + Q TV AL AT TV AL DI MI EEEMV NRZ • Amplitude • Zee 34 ZE E Ze • Acq Mode Sample • 30.00mV I • App NRZ • Amplitude • Zee 34 ZE E Ze • Q TV AL AT TV AL DI MI	🗟 🚉 🗱 🜌 🖉	Run/Stop II) Trig	Direct •	Acq Mode Sample	• 30.00mV 🔟	App
App RuniStop U Trig Direct Acq Mode Sample 30.00mV NRZ Amplitude RuniStop U Trig Direct Acq Mode Sample 30.00mV RuniStop U Trig	NRZ	🗙 dB 🕌	🗱 😿 🌞	🗶 Q 🔊	A A A	N N N
RuntStop u Trig Direct Acq Mode Sample 30.00mV I App NRZ Amplitude XZe 341 XI X X X X III X X III X X X X X X X X	114.9mV					
Run/Stop.u) Trig Direct • Acq Mode Sample • 30.00mV II: App NRZ • Amplitude • Zee 34 ZEI E ZE 🗰 💽 O TO AL AL AL AL AL AL						
Run/Stop II Trig Direct • Acq Mode Sample • 30.00mV II • App NRZ • Amplitude • Zee 34 ZE E ZE * Q 77 Ac Act TT AT TT AT						
App Run/Stop.uj Trig Direct • Acq Mode Sample • 30.00mV III • App NRZ • Amplitude • Zee 34 ZE ZE 🐡 P Q TV AL AL AL 7V						
Runistop uj Trig Direct - Acq Mode Sample - 30.00mV III - S (App NRZ - Amplitude - ZEM 344 EX EX EX (App 120mV						
NRZ - Amplitude - 🟧 💥 🛣 🔀 🔆 🚾 🥠 🚈 🗘 TT 🕰 TT 🕰 TT 🕅	🗎 🛋 🚼 🌌 🔟 🧭	Run/Stop II Trig	Direct •	Acq Mode Sample	30.00mV	🖌 🔝 App
	NRZ • Amplitude •	₩dB 🗦 🛔 🔀	: 🔣 蒾 🌞	🐺 Q 🔊	AT III IV	NN
	114.9mV					
· · · · · · · · · · · · · · · · · · ·						
					daha da	ala de la . Regular esta

First successful user experiment

- ARTOF spectrum at photon energy of 44 eV of Au(111) single crystal sample
- Reduced revolution frequnecy of 6.25 MHz to 2.083 MHz (revolution time 160 ns to 480 ns)
- Two successful user runs of 10 h each in decay mode
- Vertical and horizontal position shows good long term stability of island orbit
- Paper in preparation
- MLS access perfect for development and first tests

23/24th September 2020, ARD ST3 Meeting, online, Karlsruhe, Germany

TRIBs at BESSY II: Separation at beam lines

Separation – Orbit Displacement and Angle for 2nd Island Orbit

Separation: > 10 σ at horizontal source size of $\sigma_x \sim$ 300 mm and divergence of maximal $\sigma_x \sim 0.3$ m rad

TRIBs at BESSY II: Optical Functions & Emittance

Emittances:

- B2 standard user mode: 7.6 nm rad **B2 TRIBs core orbit:** 7.7 B2 TRIBs island orbit:
 - nm rad 8.0 - 14 nm rad

$$\sigma = \sqrt{\beta \cdot \epsilon + (D \cdot \delta)^2)}$$

Source size on island orbit increases by a factor of < 2

TRIBs and TopUp Injection at BESSY II

Injection into BESSY II's TRIBs optics: Injection distortion

• Comparison between Feb 2018 (one drive) and Nov 2019 (three drives)

February 2018

Horizontal sources size increases by 16-20%

Vertical source size decreases by 2-3 %

November 2019

Horizontal sources size decreases by < 1% Vertical source size increases by ~ 1 %

All spots in x-plane

TRIBs 2018

TRIBs 2020

