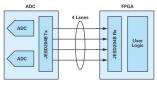
Latency comparison of ADCs with different interfaces.

Jan Marjanovic, Uros Mavric Deutsches Elektronen-Synchrotron DESY 2020-09-24

ARD ST3 2020



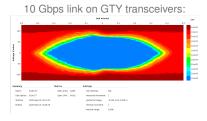
Motivation

- For some applications (e.g. LLRF, Klystron Lifetime Management) the latency of the entire signal processing chain (ADC+FPGA (DSP algorithm)+DAC) is extremely important
- Here we only consider the latency of the Analog Front End (AFE) + ADC internal pipeline + ADC-FPGA interface

Digitizers in MicroTCA:

- > A few different digitizers already available in MicroTCA form-factor, with several others being developed
- > Wide variety of ADCs, from 16-bits 125 MSPS to 12-bits 4 GSPS
- > Different interfaces (LVDS, JESD204B, RFSoC) between FPGA and ADC - different latencies

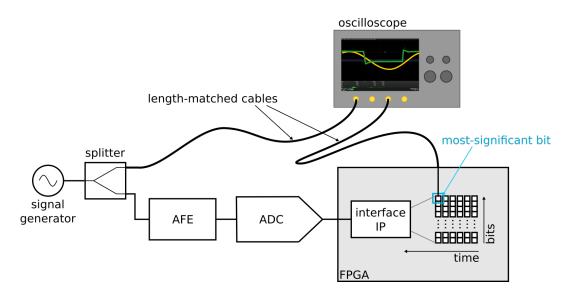
ADC	Board	Interface	Resolutions [bits]	Sampling rate [MSPS]
AD9268	SIS8300-KU	LVDS	16	125
ADC12D800RF	DAMC-FMC2ZUP + DFMC-DS800	LVDS	12	800
ADS54J60	DAMC-FMC2ZUP + ADS54J60EVM	JESD204B	16	1000
XCZU28DR	ZCU111	RFSoC	12	4096



Interfaces

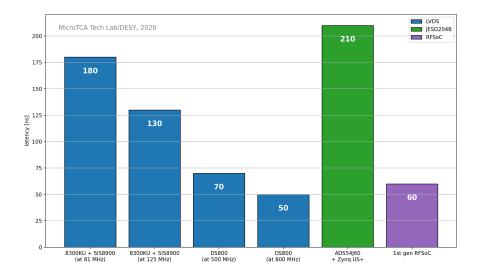
JESD204B

- Serial interface (Multi-Gigabit Transceivers)
- > Link has different configurations
- > LMFS = 4211 used in this test
 - 4 lanes
 - 2 converters
 - 1 octet per frame
 - 1 sample per frame
- > subclass 1 \rightarrow SYSREF (\sim *MHz* signal) used for synchronization

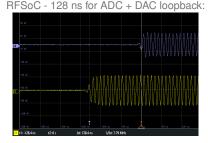

Xilinx RFSoC

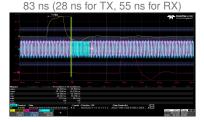
- > A single device combines:
 - 8 ADCs (12b, 4 GSPS)
 - 8 DACs (14b, 6.5 GSPS)
 - a large FPGA
 - a decent ARM CPU
- Interfacing between ADCs and FPGA is very simplified
- > Data (N samples in parallel) + data valid into FPGA logic

RFSoC footprint (ADCs and DAC on the left side):



AFE+ADC+interface latency




J. Marjanovic, U. Mavric | DESY | 2020-09-24 | Page 6

Conclusions

- > Several ADCs were compared, with different interfaces
- > We see that the latency of MGT transceivers (in JESD204B case) is high, but somehow comparable to other solutions
- > Higher sample rate \implies lower ADC+interface latency
- > DFMC-DS800 and RFSoC have significantly lower latency than other solutions

GTYE4 MGT latency (at 6.25 Gbps):

Thanks for your attention.

