Double differential σ of D^{*} at 7TeV 2010

N. Z. Jomhari, A. Geiser

DESY Hamburg QCD meeting

March 26, 2020

- Objective: To measure the total cross section of inclusive charm at different pp center of mass energies (0.9, 2.7, 5, 7, 8, 13 (from PU in BParking) TeV)
- How?: By using all PVs in the event. More details can be found in backup
- Today (double differential σ 7 TeV):
 - Analysis setup
 - Signal determination
 - Efficiency
 - Luminosity
 - σ

Analysis setup

Analysis setup

- The Ntuples were produced using Virtual Machine (VM) from CMS Open Data with CRAB job (SLC5 to compile and el7 to submit the job)
- The input datasets for data are available publicly in CMS Open Data portal
- For MC, currently the MC used was only charm MC (w/o separation with beauty)
- The input datasets that are used for the results:
 - /ZeroBias/Run2010A-Apr21ReReco-v1/AOD
 - /MinimumBias/Run2010A-Apr21ReReco-v1/AOD
 - /MinimumBias/Run2010B-Apr21ReReco-v1/AOD
 - /ZeroBias/Commissioning10-May19ReReco-v1/RECO
 - /MinimumBias/Commissioning10-May19ReReco-v1/RECO
 - /MinBias_charmfilter_TuneZ2star_7TeV-pythia6-evtgen/LowPU2010DR42-NoPU2010_DR42_START42_V17B-v2/AODSIM
- Previously, the results used only ZeroBias trigger
- Now, used ZeroBias and MinimumBias triggers. The details for triggers list can be found in AN-18-284 pg. 28

Signal determination

Signal determination

- There are two methods used to get the number of signals
- 1. Used fitting function
- 2. Used background substraction
- Currently we are using method 2 for double differential σ

Background subtraction

- Normalized the wrong charge (WC) sign to the right charge sign in the side bands to get the scale factor (SF)

- Use the SF to normalize WC sign in signal band
- Substract right charge sign to the normalized wrong charge to get Nsignal

Fitting function

Modified gaussian function for signal Gauss^{mod} $\propto \exp[-0.5 \cdot x^{1+1/(1+0.5 \cdot x)}]$ $x = |(\Delta m - m_0)/\sigma|$

Threshold function for background $A \cdot (\Delta m - m_{\pi^+})^B \cdot \exp[C \cdot (\Delta m - m_{\pi^+}) + D \cdot (\Delta m - m_{\pi^+})^2]$ Signal determination

Nsignal at lower and higher p_T region

 Δ m distribution at lower and higher p_T regions using fitting method looks ok

Zula	iha ((DESY)	

Δm in p_T and y phase space

		N	sig _{D*->K}	ππ		
() 10	- 58 - ±9	52 ± 7	47 ± 7	17 ± 4	7 ± 2	-300
10 م0	32 ±6	30 ± 6	17 ± 5	8 ± 4	3 ± 1	
8	- 62 - ±8	39 ± 7	19 ± 5	15 ± 4	0 ± 2	-250
7	_ 81 _ ±10	69 ± 9	33 ±7	10 ± 5	0 ± 1	-200
, 6	123 ±13	108 ± 12	44 ± 8	15 ± 6	-2 ± 4	
5	180 ±17	158 ± 16	70 ± 13	22 ± 9	2 ± 3	-150
4	- 322 - ±26	190 ± 22	109 ± 19	7 ± 12	16 ± 5	-100
т 2	- 323 - ±28	228 ± 25	81 ± 21	14 ± 14	10 ± 5	
2	162 ±22	99 ± 20	30 ± 15	24 ± 10	-5 ± 5	-50
- 1	26 ±14	-3 ±13	15 ±9	7 ±7	2 ± 2	0
ł	0 0).5	1 1.	.5 2	2	2.5 y

Calculating efficiency of $D^* \to K\pi\pi$

- Branching ratio (BR) from PDG:
 - $D^* \rightarrow D^0 \pi$ = 0.68
 - $D^0 \rightarrow K\pi$ = 0.039
- D* eff. for MC charm filter:

•
$$rac{N_{reco\&true}}{N_{true}}/(0.039*0.68)$$

1D D* efficiency

Eff. of D* reconstruction

 D^* efficiency decreases when rapidity going higher but increases as p_T going higher

$2D D^*$ efficiency

			eff _{D*->I}	$_{\kappa\pi\pi}$ in MC $_{\kappa\pi\pi}$	charm			
(GeV)	11 10	0.63 ± 0.038	0.49 ± 0.034	0.27 ± 0.026	0.2 ± 0.024	0.073 ± 0.016		~
о _т		0.57 ± 0.053	0.41 ± 0.046	0.3 ± 0.041	0.14 ± 0.029	0.014 ± 0.01	0.	9
	9	0.53 ± 0.041	0.41 ± 0.036	0.28 ± 0.031	0.15 ± 0.024	0.063 ± 0.017	0.	8
	8	0.47 ± 0.03	0.4 ± 0.028	0.23 ± 0.022	0.11 ± 0.016	0.024 ± 0.008	0.	/ 6
		0.42 ± 0.022	0.33 ± 0.02	0.18 ± 0.015	0.1 ± 0.012	0.018 ± 0.0053	0.	о Е
		0.35 ± 0.015	0.3 ± 0.014	0.16 ± 0.01	0.07 ± 0.0071	0.014 ± 0.0033	0.	3
		0.28 ± 0.01	0.2 ± 0.0085	0.11 ± 0.0062	0.054 ± 0.0046	0.008 ± 0.0018	0.	4 2
	4	0.13 ± 0.0048	0.11 ± 0.0044	0.054 ± 0.0032	0.021 ± 0.002	0.003 ± 0.0008	0.	ა ი
		0.033 ± 0.0018	0.024 ± 0.0015	0.011 ± 0.0011	0.0043 ± 0.00067	0.00057 ± 0.00025	0.	2 1
		0.0051 ± 0.00058	0.0028 ± 0.00044	0.0007 ± 0.00022	0.00037 ± 0.00017	0 ± -nan	0.	I
	0	C	0.5	1 1	.5 2	2 2 y	.5 	

Luminosity

- For this result, estimated luminosity was used: 1.75nb⁻¹
- The correct luminosity is almost done but not ready for this presentation
- More details regarding the ongoing luminosity calculation can be found in AN pg. 14 & 30

 $\mathsf{D}^* \sigma$

σ as a function of p_T

On the left: σ compared with ALICE looks comparable

 σ

σ as a function of p_T

double differential σ as a function of p_T

The σ was compared with ALICE and LHCb result for each p_T bin

Zulaiha (DESY)

σ as a function of |y|

 σ

 σ Xsec afo |y|

σ as a function of $|\mathbf{y}|$

σ Xsec afo |y|

double differential σ as a function of |y|

The σ was compared with ALICE and LHCb result for each $|\mathbf{y}|$ bin

Conclusion

- More statistics was added to the results. There will be a further increase of statistics by a factor 2 or so from pileup in the muon and electron samples (being worked on)
- Luminosity calculation is almost done
- Double differential σ compared with ALICE, LHCb and Pythia looks reasonable
- Next would be combined 3 bins of rapidity (0.5-2.0)
- Same procedure will be done for D⁰
- Systematics studies will start soon

Backup

Backup

Introduction overview

- Objective: To measure the total cross section of inclusive charm at different pp center of mass energies (0.9, 2.7, 5, 7, 8, 13 (from PU in BParking) TeV)
- Why? Test NNLO QCD, constraints on PDFs, measurement of charm quark mass
- So far, only parts of phase space are measured at LHC
- CMS + LHCb together can cover essentially full phase space of $\sigma_{c\bar{c}}^{tot}$
- Challenge: Acceptance of D mesons at low p_T

Rho Z

Analysis strategy in general

CMS Experiment at LHC, CERN Data recorded: Tue Aug. 2 09:15:27 2016 CEST Run/Event: 278018 / 1233678348 Lumi section: 679

Data Zero Bias 13 TeV event display

It shows several primary vertices in an event

CMS

1 out of 10 vertices is expected to be charm vertex

We use all primary vertices for our analysis!

Zulaiha (DESY)

D* σ at 7 TeV 2010

March 26, 2020 27 / 24

D meson reconstruction

$D^0 / \overline{D}^0 \to K^{\mp} \pi^{\pm}$ selection

Signal determination cont.

- comparison with ZeroBias Trigger
- higher and lower p_T region using background substraction method
- background substraction method for each phase space
- fitting function method for each phase space

Nsignal at higher p_T region

Nsignal at lower and higher p_T region

 Δm distribution at lower and higher p_T regions using background subtraction method looks comparable with fitting method

Nsignal using background substraction

p*T*:1-2 GeV, |**y**|:0.0-0.5

p_T:1-2 GeV, |y|:0.5-1.0

Nsignal using background substraction

p_T:1-2 GeV, |y|:1.0-1.5

p_T:1-2 GeV, |y|:1.5-2.0

p*T***:1-2 GeV**, |**y**|:2.0-2.5

p*T*:2-3 GeV, |y|:0.0-0.5

p_T:2-3 GeV, |y|:0.5-1.0

p*T***:2-3 GeV**, |**y**|**:1.0-1.5**

p_T:2-3 GeV, |y|:1.5-2.0

p*T*:2-3 GeV, |y|:2.0-2.5

p*T*:3-4 GeV, |**y**|:0.0-0.5

p_T:3-4 GeV, |y|:0.5-1.0

p*T*:3-4 GeV, |y|:1.0-1.5

p*T*:3-4 GeV, |y|:1.5-2.0

p*T*:3-4 GeV, |**y**|:2.0-2.5

p*T*:4-5 GeV, |**y**|:0.0-0.5

p*T*:4-5 GeV, |**y**|:0.5-1.0

p*T*:4-5 GeV, |**y**|:1.0-1.5

p_T:4-5 GeV, |y|:1.5-2.0

p*T*:4-5 GeV, |**y**|:2.0-2.5

p*T*:**5-6 GeV**, |**y**|:**0.0-0.5**

p_T:5-6 GeV, |y|:0.5-1.0

p*T***:5-6 GeV**, **|y|:1.0-1.5**

p_T:5-6 GeV, |y|:1.5-2.0

p*T*:**5-6 GeV**, **|y|:2.0-2.5**

p*T*:6-7 GeV, |y|:0.0-0.5

p*T*:6-7 GeV, |**y**|:0.5-1.0

p*T*:6-7 GeV, |y|:1.0-1.5

p*T*:6-7 GeV, |y|:1.5-2.0

p*T*:6-7 GeV, |y|:2.0-2.5

p*T*:7-8 GeV, |**y**|:0.0-0.5

p*T*:7-8 GeV, |**y**|:0.5-1.0

p*T*:**7-8 GeV**, |**y**|:**1.0-1.5**

p*T*:7-8 GeV, |y|:1.5-2.0

p*T*:**7-8 GeV**, |**y**|:**2.0-2.5**

p*T*:8-9 GeV, |y|:0.0-0.5

p*T*:8-9 GeV, |**y**|:0.5-1.0

p*T***:8-9 GeV**, |**y**|**:1.0-1.5**

p*T*:8-9 GeV, |y|:1.5-2.0

p*T*:8-9 GeV, |**y**|:2.0-2.5

p*T*:9-10 GeV, |y|:0.0-0.5

p*T*:9-10 GeV, |y|:0.5-1.0

p*T*:9-10 GeV, |y|:1.0-1.5

p_T:9-10 GeV, |y|:1.5-2.0

p*T*:9-10 GeV, |**y**|:2.0-2.5

p_T:10-11 GeV, |y|:0.0-0.5

p_T:10-11 GeV, |y|:0.5-1.0

p_T:10-11 GeV, |y|:1.0-1.5

p_T:10-11 GeV, |y|:1.5-2.0

p*T*:10-11 GeV, |y|:2.0-2.5

p_T:1-2 GeV, |y|:0.0-0.5

p_T:1-2 GeV, |y|:0.5-1.0

D* σ at 7 TeV 2010

p_T:1-2 GeV, |y|:1.0-1.5

p_T:1-2 GeV, |y|:1.5-2.0

p_T:1-2 GeV, |y|:2.0-2.5

p*T*:2-3 GeV, |y|:0.0-0.5

p_T:2-3 GeV, |y|:0.5-1.0

p_T:2-3 GeV, |y|:1.0-1.5

p*T*:2-3 GeV, |y|:1.5-2.0

p*T*:2-3 GeV, |**y**|:2.0-2.5

p_T:3-4 GeV, |y|:0.0-0.5

p*T*:3-4 GeV, |**y**|:0.5-1.0

p*T*:3-4 GeV, |**y**|:1.0-1.5

p*T*:3-4 GeV, |**y**|:1.5-2.0

p*T*:3-4 GeV, |**y**|:2.0-2.5

p*T*:4-5 GeV, |**y**|:0.0-0.5

p*T*:4-5 GeV, |**y**|:0.5-1.0

p*T*:4-5 GeV, |**y**|:1.0-1.5

p*T*:4-5 GeV, |**y**|:1.5-2.0

p*T*:4-5 GeV, |**y**|:2.0-2.5

p*T*:**5-6 GeV**, **|y|:0.0-0.5**

p*T*:**5-6 GeV**, **|y|:0.5-1.0**

p*T*:**5-6 GeV**, **|y|**:**1.0-1.5**

p*T*:**5-6 GeV**, **|y|**:**1.5-2.0**

p*T*:**5-6 GeV**, **|y|:2.0-2.5**

p*T*:6-7 GeV, |**y**|:0.0-0.5

p*T*:**6-7 GeV**, **|y|:0.5-1.0**

p*T*:6-7 GeV, |**y**|:1.0-1.5

p*T*:6-7 GeV, |y|:1.5-2.0

p*T*:6-7 GeV, |**y**|:2.0-2.5

p*T*:**7-8 GeV**, |**y**|:**0.0-0.5**

p*T*:**7-8 GeV**, |**y**|:**0**.**5**-**1**.**0**

p*T*:**7-8 GeV**, **|y|**:1.0-1.5

p*T*:7-8 GeV, |**y**|:1.5-2.0

p*T*:7-8 GeV, |**y**|:2.0-2.5

p*T*:8-9 GeV, |y|:0.0-0.5

p*T*:8-9 GeV, |y|:0.5-1.0

p*T*:8-9 GeV, |y|:1.0-1.5

p*T*:8-9 GeV, |y|:1.5-2.0

p*T*:8-9 GeV, |**y**|:2.0-2.5

p_T:9-10 GeV, |y|:0.0-0.5

p*T*:9-10 GeV, |y|:0.5-1.0

p*T*:9-10 GeV, |y|:1.0-1.5

p*T*:9-10 GeV, |y|:1.5-2.0

p*T*:9-10 GeV, |**y**|:2.0-2.5

p_T:10-11 GeV, |y|:0.0-0.5

p*T*:10-11 GeV, |**y**|:0.5-1.0

p_T:10-11 GeV, |y|:1.0-1.5

p_T:10-11 GeV, |y|:1.5-2.0

p*T*:10-11 GeV, |**y**|:2.0-2.5

Nreco match true

Nreco&true in MC charm

Ntrue

Ntrue

Ntrue in MC charm

Efficiency

Efficiency

Information related to efficiency $D^* \rightarrow D^0 \pi$

- The requested MC datasets 7TeV are available at DESY site:
 - /MinBias_charmfilter_TuneZ2star_7TeV-pythia6-evtgen/LowPU2010DR42-NoPU2010_DR42_START42_V17B-v2/AODSIM $\sim 20M$
 - /MinBias_beautyfilter_TuneZ2star_7TeV-pythia6-evtgen/LowPU2010DR42-NoPU2010_DR42_START42_V17B-v2/AODSIM $\sim 2M$
 - /D0Kpi_pT0toInf_TuneZ2star_7TeV-pythia6-evtgen/LowPU2010DR42-NoPU2010_DR42_START42_V17B-v2/AODSIM $\sim 6M$
 - /DplusKpipi_pT0toInf_TuneZ2star_7TeV-pythia6-evtgen/LowPU2010DR42-NoPU2010_DR42_START42_V17B-v2/AODSIM $\sim 5M$
- Charm fragmentation fraction:
 - $f(c \rightarrow D^*) = 0.23$
 - $f(c \rightarrow D^0) = 0.61$
- Branching ratio (BR):
 - $D^* \rightarrow D^0 \pi = 0.68$
 - $D^0 \rightarrow K\pi = 0.039$
- For MC charm filter:
 - $\frac{N_{reco\&ctrue}}{N_{true}} / (0.039 * 0.68)$ (For D*)
 - $\frac{N_{reco\&ctrue}}{N_{true}}/(0.039/2)$ (For D0)

Efficiency

1D D^{*} efficiency

Eff. of D* reconstruction

Eff. of D* reconstruction

 D^* efficiency decreases when rapidity going higher but increases as p_T going higher