

Charm-Beauty Separation in D meson final states

Josry Metwally, Achim Geiser - Hamburg, 26.03.2020

My PhD project

• Measure total beauty cross sections at different center of mass energies 0.9,

2.76, 5, 7, 8, and 13 TeV, without theory extrapolation for the first time in \rightarrow

- Measure cross sections in full phase space of D mesons from b hadron decays in small bins in p_{τ} and |Y| and integrate
- Decays:

00000

$$\begin{array}{c} B \rightarrow D^*X \rightarrow D^0\pi_s X \rightarrow K\pi\pi_s X \\ \text{and} \quad B \rightarrow D^0X \rightarrow K\pi X \end{array}$$

• Challenge: Separation of D mesons (prompt and from b hadrons decays) near the production threshold

Charm-Beauty Separation

- Trained with a MC (prompt and non-prompt D^o) how to distinguish statistical between charm and beauty
- Created Distance of Closest Approach (DCA) distribution

D⁰ flight distance

Signal extraction on 5 TeV 2015 data

• We measure $D^* \to D^0 \pi$;shown distributions have the cuts: $\mathbf{p}_{\mathbf{T}}$ > 3,5 GeV, |Y| < 1

- We need to subtract the background in the signal region
- Normalize red to the blue (in grey area) leads to an scale factor of SF = **1,09983** in the signal region (pink)

Fitting templates to data

- Used the Higgs combine tool for ۲ fitting the templates to the data
- We got the fit parameter: ۲

charm : +3.884 -0.079/+0.081 beauty: +0.142 -0.018/+0.018

- Integral of input MC charm is: $N_c = 4608$
- Integral of input MC beauty is: $N_{h} = 11797$ •

Page 5

The dca-data distributions

• For completeness the calculation of the brauty/charm signal

Charm-Beauty Separation

- We found:
 - → Fraction of D* from charm is (91,4 +- 1,1)% → Fraction of D* from beauty is (8,5 +- 1,1)%
- By checking the MC we expected:
- 89,3% only c cbar
- 7,49% only b bbar
- 3,19% b bbar + c cbar

 charm-beauty separation is under control

Cross section calculation

Idea: calculate in one bin a par. total cross section by using only the information from the MC and in the second step compare it with the measurement from the data in the same bin

• Using our MC15_D0Kpi sample (details in back up)

$$\mathcal{L}_{eff} = \frac{N}{\sigma} = \frac{12077624}{298700000pb} = \frac{12077624}{298,7\mu b} = 40,43nb^{-1}$$

got information from MCM: https://cms-pdmv.cern.ch/mcm/requests?dataset_name=D0Kpi_pT0toInf_TuneCUEP8M1_5TeV_pythia8-evtgen&page=0&shown=127

Calculate for p₁>3,5 and |Y|<1 par. total cross section for charm/beauty by using only the MC

• selected D* full fill the decay chain: $D^* \to D^0 \pi \to K \pi \pi$ (used promt/nonprompt flag at generator level)

Calculate for p₁>3,5 and |Y|<1 par. total cross section for charm/beauty in 2015 MinBData 5TeV

• Luminosity: used brilcalc $\mathcal{L}_{int} = 27,9nb^{-1}$ consistent with expectations

DESY. | Charm-Beauty Separation in D meson final states | Josry Metwally, 26.03.20

Summary and outlook for 2015 5 TeV

- We will use the shown procedure bin by bin in full phase space
- Got luminosity $\mathcal{L} = 27, 9nb^{-1}$
- Calculate efficiencies bin by bin in full phase space (on the way)
- Calculate cross sections for D* from b hadron decays bin by bin in full phase space
- Get reference cross sections by using FONLL

Is the Charm-Beauty Separation possible in 2010 7 TeV data

We look now in the phase space:

- |Y| < 2,5 and $p_T < 3,5$
- |Y| < 2,5 and $p_T > 3,5$

Signal extraction on 7 TeV 2010 data

Normalize red to the blue (in grey area) leads to a scale factor in the signal region (pink) for lower/higher p_{τ} region of:

Charm-Beauty Separation in 2010 7 TeV data

- Used the Higgs combine tool for • fitting the templates to the data
- Got the fit parameter: •

+0,06 -0.002/+0.002 charm : beauty: +0.078 -0.02/+0.02

- Integral of input MC charm is: $N_c = 32583$ •
- Integral of input MC beauty is: $N_{h} = 2449$ •

dca of beauty and charm in D*D⁰ 2010 multiData_JSON5 7TeV used MC10_MBD0Kpi_JSON5, SF= 1.08, p_>3.5GeV

Charm-Beauty Separation in 2010 7 TeV data

- Used the Higgs combine tool for • fitting the templates to the data
- Got the fit parameter: •

+0.084 -0.008/+0.008 charm : beauty: +0.101 -0.082/+0.082

- Integral of input MC charm is: $N_c = 5810$ •
- Integral of input MC beauty is: $N_{h} = 660$ •

Charm-Beauty Separation in 2010 7 TeV data

- Conclusion:
 - for $p_{T} > 3,5$:
 - \rightarrow Fraction of D* from charm is (91,1 +- 2,3) %
 - \rightarrow Fraction of D* from beauty is (8,9 +- 2,3) %
 - for $p_{T} < 3,5$:
 - \rightarrow Fraction of D* from charm is (87,9 +- 9,9) %
 - \rightarrow Fraction of D* from beauty is (12,0 +- 9,9) %
- charm beauty separation is possible in 2010 7 TeV data and useful for the calculation of the charm cross section in full phase space

Thank you for your attention

- Trained with a MC (prompt and non-prompt D⁰) how to distinguish statistical between charm and beauty and created Distance of Closest Approach (DCA) distribution (HIN16-016), Used:
 - MC15_PrmtD0pT0: /PrmtD0_pThat-0_pT-0_pp_5p02-Pythia8/HINppWinter16DR-75X_mcRun2_asymptotic_ppAt5TeV_v3-v1/AODSIM, 1347186 events
 - MC15_NonPrD0pT0: /NonPrD0_pThat-0_pT-0_pp_5p02-Pythia8/HINppWinter16DR-75X_mcRun2_asymptotic_ppAt5TeV_v3-v1/AODSIM, 1942712 events
 - MC15_D0Kpi: /D0Kpi_pT0toInf_TuneCUEP8M1_5TeV_pythia8-evtgen/HINppWinter16DR-75X_mcRun2_asymptotic_ppAt5TeV_v3-v3/AODSIM, "pdmv_evts_in_DAS": 12077624