

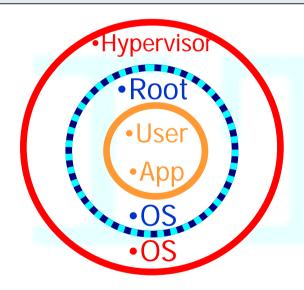
Highly Available Central Services III A Virtualization Approach

Thomas Finnern DESY/IT

Overview

- * Virtualization
- * Why
- * Features
- * How
- * Hypervisor
- * Guests
- * Use Cases
- * Where to
- * Conclusions

Virtualization


* Definition

- Network Resources
- Storage Resources

* Used Virtualizations

- Clustering
 - Sun Cluster
- Content Based Routing
 - **(E)** Layer 7 Routing
 - Cisco?
- Host Virtualization
 - Solaris Container
 - XEN

Virtualization is the technique of managing and presenting storage devices and other resources functionally, regardless of their physical layout or location.

In computing, paravirtualization is a virtualization technique that presents the abstraction of virtual machines with a software interface that is similar but not identical to that of the underlying hardware.

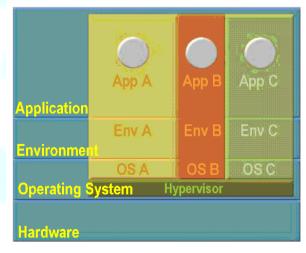
Why

* Minimize Efforts

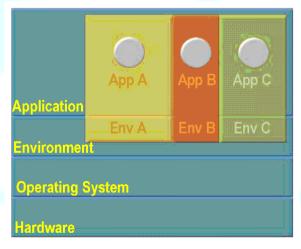
- Easy Provisioning
- Easy Resource Control
- Multi-OS Service Offer
- Security / Service Separation

*** Getting Better**

- Enhanced Load Distribution
- Enhancing Fault Tolerance and Security
- Separate Test, Developing and Production on same Hardware



How

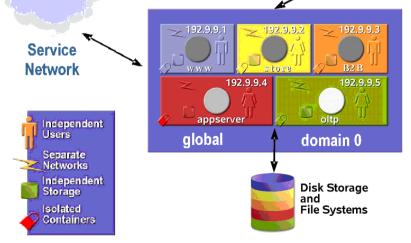

* RedHat

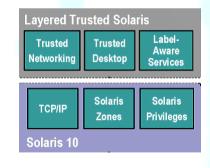
- RHEL 4.4 with XEN 3 Hypervisor
- Plan: RHEL 4.5+, 5.0+ with Built In Support
- Logical Volume Manager
- Hypervisor and Guests
- 2 8-Core-4G-X4200 + 1 PC

* Sun

- Solaris 10 Zones
- Plan: (Open)Solaris 11 with XEN
- **☼** ZFS (Solaris 10 U3+)
- Zone + SRM = Container

Key Features and Benefits


* XEN:


- Open Source
- Complete Separation between Guests
- Paravirtualization
- Intel-Vanderpool and AMD-Pacifica Supported for unmodified Guests (without Live Migration)
- Virtual Machines near Native Speed
- Live Migration of Guests
- Up to 32 virtual CPU's per Guest
- Load Distribution and Weighting between Guests
- X86/32 and x86/64 Support
- Network over Software Bridge(s)

 Production
 Network(s)
- Own Mac-Address for each Interface

* Solaris Container:

- Open Solaris
- Separation (and Shares) configurable
- One OS for All
- Sparc and x86
- Guests Machines at Native Speed
- No Live Migration (?, cloning planned)
- Cores per Zone not limited
- Resource Management between Containers
- Sparc and x86 with 32/64 bit Support
- Network over selected Device(s)
- No own Mac-Address for each Device (?)
- Sparse-root and Whole-root Models

Hypervisor / Global Zone

* XEN Test:

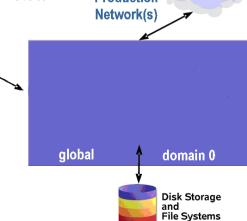
- Defined one admin domain cross platform
- Configuration: Add feature vms
- Reconfiguration: New Install / Reboot
- Hypervisor with Minimum Installation
- Logical Volume Manager for FS-Handling
- Separate Network for Service and Production
- Guest Installations from Scratch
- Unvisible Filesystems
 - /scratch/vsges/root
 - /scratch/vsges/sge
 - /scratch/vsges/...
- Changing to Image Preparation

Customisation

* Methods

- Image Preparation
 - Partitioning
 - OS and Data
 - Application
 - Networking
- Deployment Methods
 - mk image
 - mk virtual
- Live Cycle Management
 - As Usual ...

- mk_image
 - Install File or
 - Clone/Copy
 - Pack
- mk_virtual
 - Unpack
 - Networking
 - Partitioning
 - Glue


***** Solaris Container Test:

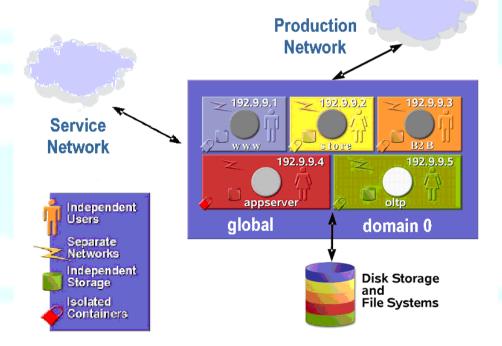
- Defined one admin domain cross platform
- Configuration: Add feature vms
- Reconfiguration: On the fly
- Global Zone Installation will/can be inherited
- ZFS for FS-Handling
- Separate Network for Service and Production
- Guest Installations from Scratch
- Visible Filesysstems

Service

Network

- /scratch/vinnetou/root
- /scratch/vinnetou/afscache
- /scratch/vinnetou/... Production

Guests / Zones and Pools



* XEN Test:

- Configuration: Add feature vms-<SERVER>
- Openafs kernel module must be compiled
- XEN-Mac 0x00FFFFFF&IP|0x02000000

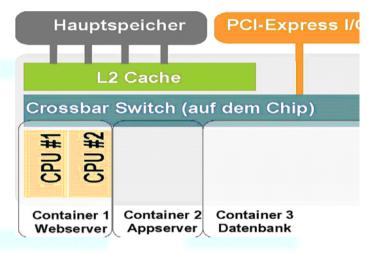
Solaris Container Test:

- Configuration: Add feature vms-<SERVER>
- afs can be inherited (ro?)
- Next version: privilege grant for kernel module usage
- Slight differences in SVC (Service Management Facility) for own sshd startup

Expected Use Cases

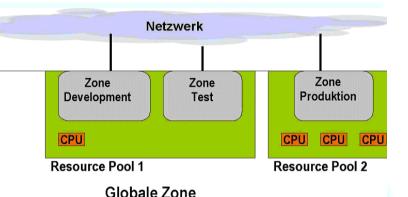
- Separation of Applications and Services
- **Providing Service IP Addresses**
- **Application Specific User Registry** and System Settings
- **★ License Cost Optimisation**
 - e.g. Oracle "Capped Containers"
- * Application Specific Resource **Binding**
 - Storage
 - Network
 - O CPU
 - Peak Load Elimination
- **Multi OS Offer for Customers**
 - Test Environments
 - **Developing Environments**
 - Migration Support
 - Multi Customer Pools e.g. SGE

- **Automatic Deployment of e.g. WEB-Services**
- * Educational Environments for Admins and Students
- **★ Database Factory**
- **Security by Encapsulation**
- **New Service Environments**
 - Order and Delivery within 1 Hour
 - Central Image Handling over SAN
- **Ease Computer Adminstration**
 - New Operating Concepts
 - Installation
 - **Testing**
 - Monitoring
 - **Backup**
 - Patching


Where to

- * Running Solaris and Linux on one Host
- * Running 100-Core Hosts over Internal Crossbar as
 - Farm or WEB Appliance
- * Cross Cluster Hopping
 - Live Migration
 - Image Moving

- *** First Production Tests**
 - Planned for 2007



Conclusions

* Virtualization Is Simple To Use

- Nice Operating and Support Model
- Administrate only Big Boxes
- Cross Platform Support

* Future

- Real or Para Virtualization will be standard
- XEN Hypervisor for Solaris and vice versa
- Standard provisioning frame (kernel, partition, image, data, ...)

* Security

On't let your system be virtualized by somebody else ...

