AFS + Object Storage

Hartmut Reuter
reuter@rzg.mpg.de

Rainer Tobbicke, CERN, Switzerland
Andrei Maslennikov, Ludovico Giammarino, Roberto Belloni, CASPUR, ltaly
Hartmut Reuter, RZG, Germany

What is object storage

Object storage systems are distributed filesystems which store data in object
storage devices (OSD) and keep metadata in metadata servers.

Access to a file in object storage on a client consists in the following steps:
— directory lookup of the file

— rpc to metadata server which checks permissions and returns for each
object the file consists of a special encrypted handle.

— rpc to the OSDs to read or write objects using the handle obtained from the
metadata server

« The OSD can decrypt the handle by use of a secret shared between
him and the metadata server. The advantage of this technique is that
the OSD doesn't need any knowledge about users and access rights.

« The most popular object storage systems are Lustre and Panasas

« Compared to parallel filesystems such as GPFS the advantage of object
storage is

— clients cannot corrupt the filesystem

— permission checks are done on the metadata server not on the client.
« Disadvantages of today's object storage systems

— limited number of platforms (Lustre: only Linux, Panasas: ?)
— no world-wide access to data in object storage (only a cluster filesystem)

Why use object storage for AFS

AFS infra-stucture has already many components necessary for good object
storage.

— central user authentication and registration

— AFS fileserver could act as OSD-metadata server allowing for better
scalability than in other object storage systems.

— OSDs for AFS could use rx-protocol and NAMEI-partitions, both
components available for all platforms.
Use of OSDs could

— remove 'hot spots' in very active volumes by distributing data over many
OSDs

— increase peak performance by striping of files (HPC environment)

— allow for RW-replication by use of mirrored objects

Implementing object storage in the AFS environment would allow to use
objects storage on any platform (not just Linux) and to use it world wide.

AFS with object storage could offer additional features such as data migration
(HSM)

— The last MR-AFS site (RZG) could come home into the lap of OpenAFS

Creation of the AFS+OSD project

In 2004 Rainer Tdbbicke from CERN implemented a first version of AFS+OSD
as a proof of concept. It was tested at the CASPUR StoragelLab in Rome.

— However, Rainer couldn't find the time to develop his idea any further

In 2005 Andrei Maslennikov from CASPUR managed to bring the interested
institutions and persons together to form a real project.

— Design decisions were made on a meeting at CERN

— Funds were raised from CERN, and ENEA to hire system programmers to
work at CASPUR

The T10 standard

T10 Technical Comitee on SCSI Storage Interfaces defines standards for SCSI
commands and devices. Two subgroups are workig on object storage:

— Object-Based Storage Device Commands (OSD)

— Object-Based Storage Devices - 2 (OSD-2)

There have been published some drafts about the OSD-standard which we
read and analyzed. As far as possible we tried to follow these standards:

— For each object
» 64-bit object-id we use vnode and uniquifier of the AFS Fid
« 64-bit partition-id we use the volume-id of the RW-volume

— A data structure “cdb” is used in SCSI commands to OSDs.

» we use a sub-structure of it to transport the encrypted object-handle

It turned out that the T10 standard is not rich enough to support full AFS
semantic

— link counts for objects needed for volume replication are missing
— the security model is too weak for insecure networks

Components of AFS + OSD

,rxosd“ the object storage server (OSD) used for AFS

— that's where the data are stored.
,08ddb” a database (similar to vidb)

— which describes all OSDs and may contain also different policies to be
used in different AFS volumes.

AFS-fileserver, acting as metadata-server
— metadata are kept in a new volume-special file
— new RPCs

— extensions also to volserver and salvager
AFS-client should behave as ever, but

— should store and fetch data directly from OSDs
Legacy-interface

— to support old clients
— to allow move of volumes to/from traditional fileservers

Example: reading a file in OSD

osddb fileserver

“

client

The fileserver gets a list of osds from the osddb (1).

The client knows from status information that the file

he wants to read is in object storage. Therefore he

does an rpc (2) to the fileserver to get its location and the
permission to read it. The fileserver returns an encrypted
handle to the client. With this handle the client gets the
data from osd (3).

osd

osd

osd

osd

Example: writing a file into OSD

osddb fileserver

osd

osd

client

osd

The fileserver gets a list of osds from the osddb (1).
The client asks (2) the fileserver where to store the file
he has in his cache. The fileserver decides following osd

his policies to store it in object storage and chooses

an osd. He allocates an object on the osd (3).

The client asks for permission and location of the object (4)

getting an encrypted handle which he uses to store the data in the osd (5).

Design considerations

« Try to follow standards (in this case SCSI T10 standard), however ...

— following strictly would break AFS semantic (no link counts to implement volume
replication)

— using T10's security model would either break AFS's security or be very expensive
« The data (and metadata) model should be rich enough for future requirements.

— Files may consist of many objects

— metadata may contain additional information such as md5-checksums

— archival versions of files may exist on special archive-OSDs ...
« |f possible keep full AFS semantics (volume replication ...)
» Use as much existing mature code as possible

— rx-protocol
— NAMEIl-interface for storing data inside the OSD servers (,rxosd")

— ubik for the database describing the OSDs (“osddb”).
« Access to data in object storage should be possible from all clients (also old ones)

— Implementation of ,legacy-interface” in the fileserver.

Object

- Data are stored in objects . inside OSDs.
— simplest case: one file == one object

Objects

« Data of a file could be stored in multiple objects allowing for
— data striping (up to 8 stripes, each in a separate OSD)
— data mirroring (up to 8 copies, each in a separate OSD)

Objects + Segments

To a file existing on some OSDs later more data could be appended
The appended data may be stored on different OSDs (in case there
is not enough free space on the old ones)

— This leads to the concept of segments

— The appended part is stored in objects belonging to a new
segment.

\%\%g\% FE

Objects + Segments + File Copies

The whole file could get a copy on some archival OSD (tape, HSM)

— This leads to the concept of file copies

Archival OSD

U0

The osd metadata

The vnode of an AFS file points to quite a complex structure of osd metadata:

— Objects [l are contained in segments

— Segments are contained in file copies

— additional metadata such as md5-cecksums may be included.

Even in the simplest case of a file strored as a single object the whole hierarchy (file copy, segment,
object) exists in the metadata.

The osd metadata of all files belonging to a volume are stored together in single volume special file

— This osdmetada file has slots of constant length which the vhodes point to
— In case of complicated metadata multiple slots can be concatenated

— The osd metadata are stored in network byte order to allow easy transfer during volume move
or replication to other machines.

OSD-Metadata

L » In memory the file is described by a tree of
osd_p_fileList C-structures for the different components

osd_p file segmList metaList

archvers| archtime | spare| len| val |len val ﬂ» osd p meta

m

objList

« These structures are serialized in net-byte-order by means of rxgen-created xdr-routines
into slots of the volume special file “osdmetadata”.

The ,,osddb® data base

The ,osddb“ database contains entries for all OSDs with id, name, priorities, size ranges ...
The filesystem parameters are updated every 5 minutes by the OSDs.
OSD 1 is a dummy used by the default policy to determine maximum file size in filserver partition

osd | -v
nane

| ocal _di sk
backup
raid

t ape
npp-fs9-a
af s4-a
wras

t est
hsngpf s

af s6-a
npp-fs4-a
npp-fs8-a
npp-fs3-a
npp-fsl0-a
sfsrv45-a
sfsrv45-b
npp-fs2-a
af s8-a

---total

149
299
71442

11079

3871
2721
1869
3139
1228
1862
2047
2047
5552

329

923
2047
1023

space- - -
22.6 % up
69.8 % up
6.8 % up
81.8 % up
89.6 % up
59.5 % up
2.7 % up
99.0 % up
89.3 % up
78.7 % up
79.4 % up
76.4 % up
86.6 % up
83.9 % up
72.1 % up
79.8 % up
8.4 % up

flag
arch

ar ch
arch

ar ch

prior.

w rd

64 64
64 64
64 64
64 64
64 64
32 32
80 80
80 80
64 64
64 64
64 64
64 64
64 64
32 32
32 32
64 64
80 80

150
299
14
4095
1612
345
1870
6280
526
1581
1680
1932
2958
10
28
1650
1024

[EN

=TI ARZEZIZCILLSLS L
F’F’F’P’F’F’F’F’F’ﬁ;F’F’F’F>P’F’F’
OCOOROOOOOVWOOOOON A

----inodes---- size range

(Okb- 1nb)
% (4kb- 64kb)
% (64kb- 1nb)
% (1mb- 100gb)
% (1b- 100gb)
% (1mb- 100gb)
% (1b- 100gb)
% (1mb- 100gb)
% (1mb- 100gb)
% (1mb- 100gb)
% (1nmb- 100gb)
% (1mb- 100gb)
% (1b- 100gb)
% (1mb- 100gb)
% (1nb- 8nb)

% (8nb- 10gb)
% (1b- 100gb)
% (1mb- 100gb)

Example for OSD metadata

« The new ,fs“-subcommand ,0sd“ shows the OSD-metadata of a file.

— the three levels are file“, ,segment®, and ,object®

— The 1% file entry describes the actual disk file

— the 2™ file entry describes an archival copy with md5-checksum

— Only the archive contains a segment length, the actual file's length is found in the vnode.

~. fs osd 10nDb

10nmb has 284 bytes of osd netadata, v=3

file archvers=0, archtinme: never , magi
segnent :

c ok, 1

| ng=0, ofs=0, raid=0, strps=1, size=0, cop=1,

obj ect :
pi d=1108495556, o0i d=12884901890,
obj =1108495556. 2. 3.0

file archvers=3, archtine: Dec 7 10:39, nagi
segnent :
| ng=10000000, ofs=0, raid=0, strps=1,
obj ect :

pi d=1108495556, o0i d=12884901890,
obj =1108495556. 2. 3.0
net adat a:
nd5=0376bd622bf ecb568aeb2293e49b2696

0sd=32,
c ok, 1
si ze=0,

0sd=13,

segnents, flags=0x0

magi ¢ ok, 1 objects

strp=0, magi c ok

segnents, flags=0x0

cop=0, nmagi c ok,

strp=0, magic ok

1 objects

Progress of the project

The junior system programmers at CASPUR concentrated on a T10-compliant
implementation of the OSD and on the osddb-database

RZG became aware that this technology could be an alternative to MR-AFS

— MR-AFS is since more than 10 years maintained at RZG by a single person which
will retire in 2.5 years. It isn't open source so no fresh blood will come in.

— RZG had the man-power to do most of the programming required for the project.

In July 2006 the project was presented at the AFS-Hackathon in Vienna near
Washington DC to the OpenAFS developers.

In March 2007 a version of AFS+OSD was ready
— it offers full AFS-semantics including volume replication and legacy interface.

— still missing: support for different policies, fully functional salvager
This system underwent a stress test at CERN on

— 8 servers and 120 clients and different usage patterns.
— It turned out to be stable and it offered the expected scalability and performance.

Read/Write 50 clients, variable number of OSDs

The diagram shows that the total throughput to a single AFS volume scales with the

number of OSDs used.

the traffic is distributed equally over the OSDs

Total network traffic on OSDs were measured in steady-state.

Total Throughput (read+write) MB/s

The order of read and write guaranteed that the files to be read could no be in the
client's cache.

Values for 6 and 7 OSDs are missing (NFS problem when writing the log!)

Each new OSD contributes ~46 MB/s as long as the metadata server (fileserver) is
not the bottle-neck.

400

350
300

250

200

150

100
50

|]osd_8
B osd 7
| Josd 6
B osd 5
| Josd_4
| losd_3
B osd 2
|]osd_1

5 0OSDs

Normal AFS file (left column)

50 clients reading the same 1.3 GB file

— The normal file read can use full bandwidth because disk I/O doesn't play a role.

Mirorred file in 7 OSDs (right column)

— Of course, writing the file was slower than writing a simple file.

— The diagam shows that not all copies are accessed equally (osd 2 much less)
Total throughput on clients was 518 MB/s for the mirrored file!

550
500
450
400
350
300
250
200
150
100

50

Total read throughput MB/s

T —
I
L

Normal Fileserver

Mirrored OSDs

| Josd 7
B osd 6
[]osd 5
I osd 4
| Josd_3
| Josd 2
B osd_1

~120 clients reading randomly in large RW-volume

« This test simulates the access pattern to the ATLAS LCG software volume at CERN.
— the 50 GB rw-volume has > 700,000 small files and 115,000 directories

— nearly all acceses are “stat” or “read” with 10 times more “stat” than “read” .
« The contents of the volume was copied twice into the test cell

1% copy normal AFS volume (left column)

— 2" copy all files distributed to 8 OSDs (right column)
« scripts running in parallel with random access to files and directories 10 times more “stat”

than “read”
Total read throughput MB/s

40

35
30 | |osd_ 8
25 B osd 7
20 |]osd 6
15 — B osd 5
10 — | |osd_4
5 —ﬁ T osd_3
0 B osd 2
Normal volume All files in OSD |]osd_1

Conclusion

« It works, doesn't crash and shows the expected performance.
— Rxosd support has explicitly to be switched on in the client
— Files are only stored in OSDs if an osd-flag is set in the volume
— Therefore this code can be used already in production environments such as RZG.

— Normal user's volumes remain as they are, but special volumes may use OSDs.
« Next step must be to bring the code into the OpenAFS CVS tree.

— Once it's there it will take certainly a while until it appears in the official stable
releases. (For large file support it took at least 3 years!)

« The project was an R&D project and is now officially over.

— However, development will continue at least at RZG to achieve full MR-AFS
functionality

The current code can be found under
/ af s/ 1 pp- gar chi ng. npg. de/ conmmon/ sof t / openaf s/ openaf s- 1. 4. 4- osd

Disclaimer: This code is certainly full of bugs!

— You have to move volumes to such a server, don't start it on partitions with volumes
created with normal OpenAFS (changes in vnode and volume structures)

