
The Gradient Flow
Lattice Practices 2017

Alberto Ramos <alberto.ramos@cern.ch>



Introduction Renormalization Some applications The flow on the lattice

Overview

Introduction

Renormalization

Some applications

The flow on the lattice

2/38



Introduction Renormalization Some applications The flow on the lattice

Summary of conventions

I Mainly concerned with SU(3) Yang-Mills or QCD

S = −
1

2g2
0

∫
d4x Tr[FµνFµν ] +

∫
d4x

Nf∑
i=1

ψi( /D + m)ψi

I The lie algebra su(3) is the linear space of all traceless anti-hermitian 3× 3
matrices

I We choose a basis in su(3), Ta with a = 1, . . . , 8 such that

Tr{TaTb} = −
δab
2

I Greek indices µ, ν, · · · = 0, . . . , 3 run over space-time coordinates, while latin
indices run over the spatial coordinates i, j, · · · = 1, 2, 3.

I We abreviate integrals over momenta∫
p

=

∫ ∞
−∞

d4p
(2π)4
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Yang-Mills gradient flow: basics [Narayanan, Neuberger ’06; Lüscher ’10]

I Add “extra” (flow) time coordinate t (6= x0). Define gauge field Bµ(x, t)

Gνµ(x, t) = ∂νBµ(x, t)− ∂νBµ(x, t) + [Bν(x, t),Bµ(x, t)]
dBµ(x, t)

dt
= DνGνµ(x, t); Bµ(x, t = 0) = Aµ(x) .

I Important: t has dimensions of length2.
√

8t is a new length scale

[x] = −1; [t] = −2 (1)

I Since
dBµ(x, t)

dt
= DνGνµ(x, t)

(
∼ −

δSYM[B]

δBµ

)
At large flow time t→∞ gauge field tends to classical solution of the e.o.m.

lim
t→∞

Bµ(t, x) = Aclassical
µ (x) .

I The flow smooths the quantum fluctuations!
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How it works

dBµ(x, t)
dt

= DνGνµ(x, t); Bµ(x, 0) = Aµ(x)

I In perturbation theory we rescale Aµ → g0Aµ.
I Expand the flow field in powers of g0.

Bµ(x, t) =

∞∑
n=1

Bµ,n(x, t)gn
0 ; Bµ,n(x, 0) =

{
Aµ(x) n = 1
0 n > 1

and insert into flow equation

dBµ(x, t)
dt

= g0
dBµ,1(x, t)

dt
+O(g2

0)

Gµν(x, t) = g0∂µBν,1(x, t)− g0∂νBµ,1 +O(g2
0)

to obtain
dBµ,1(x, t)

dt
= ∂2

νBµ,1(x, t)− ∂µ∂νBν,1(x, t)

I Heat equation
I Gauge dependent part (Think of Landau gauge ∂µAµ = 0)
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How it works

dBµ,1(x, t)
dt

= ∂2
νBµ,1(x, t)− ∂µ∂νBν,1(x, t); Bµ,1(x, 0) = Aµ(x) .

I Linear equation in Bµ,1(x, t)
I ∂-operator is “diagonal” in momentum space. Use

Bµ,1(x, t) =

∫
p

eıpxB̃µ,1(p, t)
(∫

p
≡
∫ ∞
−∞

d4p
(2π)4

)
to get

dBµ,1(x, t)
dt

=

∫
p

dB̃µ,1(p, t)
dt

eıpx

∂2
νBµ,1(x, t)− ∂µ∂νBν,1(x, t) = −

∫
p

p2B̃µ,1(p, t)eıpx +

∫
p

pµpν B̃ν,1(p, t)eıpx

Flow equation in momentum space

dB̃µ,1(p, t)
dt

= −
(

p2δµν − pµpν
)

B̃ν,1(p, t); B̃µ,1(p, 0) = Ãµ(p) .
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How it works

dB̃µ,1(p, t)
dt

= −
(

p2δµν − pµpν
)

B̃ν,1(p, t); B̃µ,1(p, 0) = Ãµ(p) .

Forget about gauge terms: Solution

B̃µ,1(p, t) = e−tp2
B̃µ,1(p, 0) = e−tp2

Ãµ(p)

High momentum modes (small scale fluctuations) are exponentially damped

I Heat Flow: Smooths temperature
fluctuations at scales shorter than√

8t
I Gradient flow: Smooths quantum

fluctuations at scales shorter than√
8t

Gradient flow vs. Heat flow

We are “looking” at world with a
resolution ∼

√
8t.
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How it works

dB̃µ,1(p, t)
dt

= −
(

p2δµν − pµpν
)

B̃ν,1(p, t); B̃µ,1(p, 0) = Ãµ(p) .

Forget about gauge terms: Solution

B̃µ,1(p, t) = e−tp2
B̃µ,1(p, 0) = e−tp2

Ãµ(p)

High momentum modes (small scale fluctuations) are exponentially damped

I Heat Flow: Smooths temperature
fluctuations at scales shorter than√

8t
I Gradient flow: Smooths quantum

fluctuations at scales shorter than√
8t

Gradient flow vs. Heat flow

We are “looking” at world with a
resolution ∼

√
8t.

Show that the solution of the flow equation in momentum space is

B̃µ,1(p, t) = e−tp2
(
δµν −

pµpν
p2

)
Ãν(p)

Exercise 1
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How it works

dBµ,1(x, t)
dt

= ∂2
νBµ,1(x, t); Bµ,1(x, 0) = Aµ(x) .

I Heat kernels are fundamental solutions of the heat equation

K(x, x′, t) =
1

(4πt)2 e
(x−x′)2

4t (2)

(i.e. solutions with the property limt→0 K(x, x′, t) = δ4(x − x′))
I This is “gaussian smearing” with radius

√
8t!

Bµ,1(x, t) =

∫
d4y K(x, y, t)Aµ(y) =

1
(4πt)2

∫
d4y e

(x−y)2
4t Aµ(y) .

I Heat Flow: Smooths temperature
fluctuations at scales shorter than√

8t
I Gradient flow: Smooths quantum

fluctuations at scales shorter than√
8t

Gradient flow vs. Heat flow

We are “looking” at world with a
resolution ∼

√
8t.
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How it works

dBµ,1(x, t)
dt
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8t
I Gradient flow: Smooths quantum

fluctuations at scales shorter than√
8t

Gradient flow vs. Heat flow

We are “looking” at world with a
resolution ∼

√
8t.

Show that

Bµ,1(x, t) =

∫
d4y K(x, y, t)Aµ(y) =

1
(4πt)2

∫
d4y e

(x−y)2
4t Aµ(y) .

is actually a solution to the flow equation to leading order in g0 (wo. gauge term).

Exercise 2
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Main characteristic of the flow
I Gauge covariant under gauge transformations that are independent of t

dBµ(x, t)
dt

= DνGνµ(x, t)

I Composite gauge invariant operators are renormalized observables defined at
a scale µ = 1/

√
8t [M. Lüscher ’10; M. Lüscher, P. Weisz ’11].

I Example (Note that at t = 0 this is terribly divergent ∝ 1/a4)

〈E(t)〉 = −
1
2
〈TrGµν(x, t)Gµν(x, t)〉

finite quantity for t > 0.
I Continuum limit to be taken at fixed t.
I The energy density 〈E(t)〉will be a main character in this talk!!
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Main characteristic of the flow
I Gauge covariant under gauge transformations that are independent of t

dBµ(x, t)
dt

= DνGνµ(x, t)

I Composite gauge invariant operators are renormalized observables defined at
a scale µ = 1/

√
8t [M. Lüscher ’10; M. Lüscher, P. Weisz ’11].

I Example (Note that at t = 0 this is terribly divergent ∝ 1/a4)

〈E(t)〉 = −
1
2
〈TrGµν(x, t)Gµν(x, t)〉

finite quantity for t > 0.
I Continuum limit to be taken at fixed t.
I The energy density 〈E(t)〉will be a main character in this talk!!

Show that the flow equation is gauge covariant

Exercise 3
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Finitness of 〈E(t)〉 at leading order in PT
In this slide ” = ” means up to higher order terms

I Start with the identity

Gµν = g0∂µBν,1(x, t)− g0∂νBµ,1(x, t) = ıg0

∫
p

(
pµBν,1 − pνBµ,1

)
eıpx

I Now

GµνGµν = −2g2
0

∫
p,q

eı(p+q)x
[
pµqµB̃ν,1(p)B̃ν,1(q)− pνqµB̃µ,1(p)B̃ν,1(q)

]
I Use invariance under translations (add

∫
d4x and get δ4(p + q))

GµνGµν = 2g2
0

∫
p

B̃µ,1(p)
[
p2δµν − pµpν

]
B̃ν,1(−p)

I Use the solution of the flow equation and gluon propagator
〈Ãa
µ(p)Ãb

ν(−p)〉 =
δab
p2 δµν

〈E(t)〉 = −
1
2
〈TrGµνGµν〉 =

g2
0
2

∫
p

e−2tp2 [
p2δµν − pµpν

]
〈Tr{Ãµ(p)Ãν(−p)}〉

=
3× 8

4
g2

0

∫
p

e−2tp2
=

3× 8
128π2t2

g2
0 =

3× 8
128π2t2

g2
MS 10/38
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Finitness of 〈E(t)〉 at leading order in PT
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1
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∫
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]
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=
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=
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I Where does the factors 3 and 8 come from?
I Check that the result is independent on the gauge
I Check that if one uses the solution of the flow equation with the gauge term,

the solution is still the same

Exercise 4
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Scale setting and renormalized couplings

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t /r0
2

0

0.1

0.2

0.3

0.4

0.5

t2〈E〉

t0

√   8t = 0.2 fm √   8t = 0.5 fm
I t2〈E(t)〉 is dimensionless.
I Depends on scale µ = 1/

√
8t

I Ideal candidate for scale setting: t0 [M.
Lüscher JHEP 1008 ’10].

I Similar quantities: t1,w0, . . . [Borsanyi
et. al. ’12; R. Sommer Latt. ’14].

I Renormalized couplings at scale
µ = 1√

8t

t2〈E(t)〉 =
3

16π2 g2
MS(µ)

[
1 +O(g2

MS)
]

I Define a reference scale (t0) via

t2〈E(t)〉
∣∣∣
t=t0

= 0.3

I Define a renormalized coupling (the gradient flow coupling) via

g2
GF(µ) =

16π2

3
t2〈E(t)〉

∣∣∣
µ=1/

√
8t

Scale setting and couplings
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Scale setting and renormalized couplings
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µ = 1√
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MS(µ)

[
1 +O(g2
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]

I Define a reference scale (t0) via

t2〈E(t)〉
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= 0.3

I Define a renormalized coupling (the gradient flow coupling) via

g2
GF(µ) =

16π2

3
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∣∣∣
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√
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Scale setting and couplings

I What would you use for scale setting in the case of SU(2)? and for SU(124)?
(and why??)

I How much is the value of αGF(µ) at µ = 1/
√

8t0

Exercise 5
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Exercises of the introduction

1. Show that the solution of the flow equation in momentum space is

B̃µ,1(p, t) = e−tp2
(
δµν −

pµpν
p2

)
Ãν(p)

2. Show that

Bµ,1(x, t) =

∫
d4y K(x, y, t)Aµ(y) =

1
(4πt)2

∫
d4y e

(x−y)2
4t Aµ(y) .

is actually a solution to the flow equation to leading order in g0 (wo. gauge
term).

3. Show that the flow equation is gauge covariant
4. In the formula for 〈E(t)〉 to leading order

I Where does the factors 3 and 8 come from?
I Check that the result is independent on the gauge
I Check that if one uses the solution of the flow equation with the gauge term, the

solution is still the same
5. Scale setting and couplings

I What would you use for scale setting in the case of SU(2)? and for SU(124)? (and
why??)

I How much is the value of αGF(µ) at µ = 1/
√

8t0
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Recap (I)
I The gradient flow

Gνµ(x, t) = ∂νBµ(x, t)− ∂νBµ(x, t) + [Bν(x, t),Bµ(x, t)]
dBµ(x, t)

dt
= DνGνµ(x, t); Bµ(x, t = 0) = Aµ(x) .

Defines a smooth gauge field Bµ(x, t) from your fundamental gauge field
Aµ(x).

I Gauge invariant composite operators made of Bµ(x, t) are automatically
renormalized (after renormalization of parameters in the Lagrangian), due to
the exponential suppression (e−tp2 ) of the high momentum modes of the gauge
field Aµ(x).

I Action density as the prototipical example

〈E(t)〉 = −
1
2
〈TrGµν(x, t)Gµν(x, t)〉

is finite for t > 0
I t2〈E(t)〉 is a dimensionless renormalized quantity (can be computed on the

lattice), that depends on a scale (µ = 1/
√

8t).
Ideal candidate for reference scale and renormalized coupling definition.
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Beyond leading order

I An explicit calculation shows that actually t2〈E(t)〉 is finite to NLO [Lüscher ’10]

t2〈E(t)〉 =
3

16π2 g2
MS(µ)

[
1 + c1g2

MS(µ) +O(g4
MS)
]

with c1 finite
I Actually this is true to all orders, and for all gauge invariant observables made

of the flow field Bµ(x, t) [Lüscher, Weisz ’11]

I How to prove this? We know how to renormalize composite operators, but...
I Bµ(x, t) is not a local field (i.e. Bµ(x, t) depends on the fundamental field Aµ(y)

for y 6= x)!
I One has to see the the flow field Bµ(x, t) as living in 5d!!
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5d local formulation [Zinn-Justin ’86, Zwanziger ’88, Lüscher, Weisz ’11]

Usually one sees the gradient flow observables in “two steps”

〈O[Bµ]〉 =
1
Z

∫
DA O[Bµ]e−SYM[Aµ]

where Bµ is the solution of the flow equation

dBµ(x, t)
dt

= DνGνµ(x, t); Bµ(x, t = 0) = Aµ(x) .

Alternatively, we can promote t ∈ (0,∞) to a fifth coordinate and set-up a weird 5d
theory

Z =

∫
DBµDLµ e−S5d[Bµ,Lµ]

with S5d = SYM + Sbulk

SYM = −
1

2g2
0

∫
d4x Tr[FµνFµν ]

Sbulk = −2
∫ ∞

0
dt
∫

d4xTr {Lµ(x, t) [∂tBµ − DνGνµ]}
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5d local formulation [Zinn-Justin ’86, Zwanziger ’88, Lüscher, Weisz ’11]

Z =

∫
DBµDLµ e−S5d[Bµ,Lµ]; S5d = SYM + Sbulk

SYM = −
1

2g2
0

∫
d4x Tr[FµνFµν ]

Sbulk = −2
∫ ∞

0
dt
∫

d4xTr {Lµ(x, t) [∂tBµ − DνGνµ]}

I Lµ(x, t) = La
µ(x, t)Ta lives in the adjoint representation, with purely imaginary

components
I The path integral DLµ can be done exactly∫

DLµe−Sbulk = δ (∂tBµ − DνGνµ) ,

and it imposes the flow equation
I Now we have

〈O[Bµ]〉 =
1
Z

∫
DBDL O[Bµ]e−S5d[Bµ,Lµ] =

∫
DB O[Bµ]e−SYM[Aµ]δ (∂tBµ − DνGνµ) ,
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5d local formulation [Zinn-Justin ’86, Zwanziger ’88, Lüscher, Weisz ’11]

Z =

∫
DBµDLµ e−S5d[Bµ,Lµ]; S5d = SYM + Sbulk

SYM = −
1

2g2
0

∫
d4x Tr[FµνFµν ]

Sbulk = −2
∫ ∞

0
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∫

d4xTr {Lµ(x, t) [∂tBµ − DνGνµ]}

I Lµ(x, t) = La
µ(x, t)Ta lives in the adjoint representation, with purely imaginary

components
I The path integral DLµ can be done exactly∫

DLµe−Sbulk = δ (∂tBµ − DνGνµ) ,

and it imposes the flow equation
I Now we have

〈O[Bµ]〉 =
1
Z

∫
DBDL O[Bµ]e−S5d[Bµ,Lµ] =

∫
DB O[Bµ]e−SYM[Aµ]δ (∂tBµ − DνGνµ) ,

I What are the dimensions of the field Lµ(x, t)?
I Name a few symmetries of the action S5d

Exercise 6
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5d Local formulation [Lüscher, Weisz ’11]

We can see the theory as a 5d local field theory [Zinn-Justin ’86, Zinn-Justin, Zwanziger ’88]

Sbulk =
∫ t
0 ds

∫
d4xLa

µ(x, t)
{
∂tB

a
µ −DνG

a
µν

}

Sboundary =
∫
d4x 1

4g2
Ga

µνG
a
µν

0

t
Lagrange multiplier

4d space-time

S5d = Sbulk + Sboundary
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Proof of renormalizability

Flow for λ− φ4 : ∂tϕ(x, t) = ∂2ϕ(x, t). Use momentum space

S5d =
1
2

∫
p1,p2

δ(p1 + p2)φ̃(p1)
[
p2

1 + m2
]
φ̃(p2)

+
λ

4

∫
p1,p2,p3,p4

δ(p)φ̃(p1)φ̃(p2)φ̃(p3)φ̃(p4)

+

∫ ∞
0

dt
∫

p1,p2

{
L̃(p1, t)

[
∂tϕ̃(p2, t)− p2ϕ̃(p2, t)

]}
If we study correlation functions

〈ϕ̃(p, t)ϕ̃(−p, t)〉 =
1
Z

∫
DϕDL e−S0[φ̃]e−Sfl[L̃,ϕ̃]ϕ̃(p, t)ϕ̃(−p, t)

×
[

1 +
λ

4

∫
p1,p2,p3,p4

δ(p)φ̃(p1)φ̃(p2)φ̃(p3)φ̃(p4) + . . .

]

In this case flow equation can be exactly solved ϕ̃(p, t) = e−tp2
φ̃(p), and the path

integral
∫
DL can be analitically done

All loops comes from the “usual” interaction at t = 0

Key to the proof: in the 5d theory there are no loops in the bulk
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Proof of renormalizability

Flow for λ− φ4 : ∂tϕ(x, t) = ∂2ϕ(x, t). Use momentum space

S5d =
1
2

∫
p1,p2

δ(p1 + p2)φ̃(p1)
[
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1 + m2
]
φ̃(p2)

+
λ

4

∫
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δ(p)φ̃(p1)φ̃(p2)φ̃(p3)φ̃(p4)

+

∫ ∞
0
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∫

p1,p2

{
L̃(p1, t)

[
∂tϕ̃(p2, t)− p2ϕ̃(p2, t)

]}

Key to the proof: in the 5d theory there are no loops in the bulk

I Why we do not define the flow in Yang-Mills by the equation

dBµ(x, t)
dt

= ∂2
νBµ(x, t)

??
I Why we did not define the flow in λ− φ4 by the equation

∂tϕ(x, t) = (∂2 − m2)ϕ(x, t)

I Does the flow correlator 〈ϕ̃(p, t)ϕ̃(−p, t)〉 still have divergences? How is this
possible?

I What divergences in 〈ϕ̃(p, t)ϕ̃(−p, t)〉 have been killed by the flow?

Exercise 7
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Proof of renormalizability [Lüscher, Weisz ’11]

Z =

∫
DBµDLµ e−S5d[Bµ,Lµ]; S5d = SYM + Sbulk

SYM = −
1

2g2
0

∫
d4x Tr[FµνFµν ]

Sbulk = −2
∫ ∞

0
dt
∫

d4xTr {Lµ(x, t) [∂tBµ − DνGνµ]}

I Key new element: No loops in the bulk =⇒ only divergences at the boundary
t = 0. For t > 0 is like a classical theory!

I At t = 0 we have the usual YM action. Common lore applicable: only coupling is g
(dimensionless) =⇒ renormalizable

I We still need to show that we have included all d ≤ 4 operators at the boundary
t = 0. Note that we have a new field Lµ(x, t)
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Exercises

7. What are the dimensions of the field Lµ(x, t)?
8. Name a few symmetries of the action S5d

9. Why we do not define the flow in Yang-Mills by the equation

dBµ(x, t)
dt

= ∂2
νBµ(x, t)

??
10. Why we did not define the flow in λ− φ4 by the equation

∂tϕ(x, t) = (∂2 − m2)ϕ(x, t)

11. Does the flow correlator 〈ϕ̃(p, t)ϕ̃(−p, t)〉 still have divergences? How is this
possible?

12. What divergences in 〈ϕ̃(p, t)ϕ̃(−p, t)〉 have been killed by the flow?
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Recap (II)
I The Yang-Mills flow can be seen as a 5d local quantum field theory.
I The flow equation is imposed by adding “Lagrange multipliers” fields Lµ(x, t).

The path integral over Lµ(x, t) gives a delta function.
I Usual tools of quantum field theory can be applied to this theory.
I Very similar to stochastic quantization [Book by Zinn-Justin]
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Scale setting

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t /r0
2

0

0.1

0.2

0.3

0.4

0.5

t2〈E〉

t0

√   8t = 0.2 fm √   8t = 0.5 fm

[M. Lüscher JHEP 1008 (2010) 071].

 0

 0.1

 0.2

 0.3

 0.4

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

t
2
〈E〉

t [fm
2
]

mπ≈300 MeV

a≈0.092 fm
a≈0.077 fm
a≈0.065 fm
a≈0.054 fm

perturbative

[Borsanyi et. al JHEP 1209 (2012) 010].

I Reference scale (t0) via
t2〈E(t)〉

∣∣∣
t=t0

= 0.3

I Reference scale w0

t
d
dt

t2〈E(t)〉
∣∣∣
t=w2

0
= 0.3

24/38



Introduction Renormalization Some applications The flow on the lattice

Topological susceptibility

Topological charge

Q =

∫
x

q(x); q(x) =
1

32π2 εµνρσFµνFρσ(x)

has important role in non-perturbative physics

I Q: Why is the η meson not a pseudo-goldstone boson (UA(1) puzzle)?
I A: UA(1) is only a symmetry at the classical level, destroyed by quantum

fluctuations
∂µψγµγ5ψ(x) ∝ q(x) .

In fact in the large N limit

mη ∝ χt + . . . ; χt =

∫
x
〈q(x)q(0)〉 =

〈Q2〉
V

I How to compute χt on the lattice?

〈q(0)q(0)〉 ∼ 1/a4
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Topological susceptibility
I Q can be rigorously defined on the lattice via the index

Q = index(D) = n+ − n−

of the Neuberger Dirac operator. This can be used to compute χt [Del Debbio ’05]

I Q and topological structure of the vacuum defined via smearing/cooling in
many works in the literature.

I Gradient Flow (and 5d) provides the framework to show that the flow and the
index definitions agree [Cè et al. ’15]

q(x, t) =
1

32π2 εµνρσGµν(x, t)Gρσ(x, t)
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Running couplings
I Use the gradient flow coupling definition in finite volume

α(µ) = #t2〈E(t)〉
∣∣∣
µ=1/

√
8t=1/(cL)

Constant # depends on the choice of boundary conditions (periodic, twisted,
dirichlet (SF), . . . )

I We can measure how much changes the coupling when we change µ→ µ/2 by
changing our lattice size L

I Step scaling function
σ(u) = α(µ/2)

∣∣∣
α(µ)=u
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Running coupling

SU(3) with Nf = 3. The determination of αs(mZ) [ALPHA ’16]
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Fit Σ
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Continuum (fit Σ)
Continuum (fit 1/Σ)
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0
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Running coupling

SU(N) in the limit N →∞ and Reduction [M. Garcia Perez et. al ’14].

6−28−212−2

1/N

1.0

1.1

1.2

1.3

1.4

1.5

Σ
/
u

Σ/u vs 1/N, c=0.3

u=14.000

u=12.782

u=11.564

u=10.345

u=9.127

u=7.909

u=6.691

u=5.473

u=4.255

u=3.036

u=1.818

u=0.600

u=14.000

u=12.782

u=11.564

u=10.345

u=9.127

u=7.909

u=6.691

u=5.473

u=4.255

u=3.036

u=1.818

u=0.600

0 2 4 6 8 10 12 14
u

1.0

1.1

1.2

1.3

1.4

1.5

σ
/
u

σ/u

1-loop
2-loop
c=0.30, 3param fit SYMMLATT
c=0.30, 3param fit PLAQLATT

Simulations done in a lattice with One point. Change of scale by N → N′
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What happens when t → 0

Any operator at positive flow time has an expansion in terms of renormalized fields

O(x, t) =
∑
α

cα(t){Oα}R(x) +O(t)

Mixing pattern determined by continuum symmetries!

Example: E(x, t) = Gµν(x, t)Gµν(x, t)

E(x, t) = c1(t)1 + c2(t){FµνFµν}R(x) +O(t)

What is the renormalization condition for {FµνFµν}R(x)?

〈{FµνFµν}R(x)〉 = 0

So we can determine
c1(t) = 〈E(x, t)〉 (3)

And this can be used to determine the trace of the EM tensor

Tµµ(x) = {FµνFµν}R(x) = lim
t→0

c−1
2 (t) [E(t, x)− 〈E(t, x)〉]

But we need c2(t)!!
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The fermion flow and condensates

Flow for fermion fields [M. Lüscher, ’13]

∂tχ(x, t) = DµDµχ(x, t); Dµ = ∂µ + Bµ

with initial condition χ(x, t)|t=0 = ψ(x).
I Composite operators O made of χ(x, t), χ(x, t) renormalize multiplicatively

(t > 0)

〈OR〉 = (Zχ)(n+n′)/2〈O〉; n and n′ number of χ and χ fileds.

I Chiral condensate does not mix for t > 0 [M. Lüscher, ’13]

Σ(t) = 〈u(t, x)u(t, x)〉

I Compute proton strange content [A. Shindler ’13].

ms〈N|ss(t)|N〉c = c3(t)ms〈N|ss(0)|N〉c +O(t)

but chiral symmetry relates c3(t) with the Gπ(t) = |〈0|π(t)〉|2

c3(t) =
Gπ(t)
Gπ(0)
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The fermion flow and condensates

Flow for fermion fields [M. Lüscher, ’13]

∂tχ(x, t) = DµDµχ(x, t); Dµ = ∂µ + Bµ

with initial condition χ(x, t)|t=0 = ψ(x).
I Composite operators O made of χ(x, t), χ(x, t) renormalize multiplicatively

(t > 0)

〈OR〉 = (Zχ)(n+n′)/2〈O〉; n and n′ number of χ and χ fileds.

I Chiral condensate does not mix for t > 0 [M. Lüscher, ’13]

Σ(t) = 〈u(t, x)u(t, x)〉

I Compute proton strange content [A. Shindler ’13].

ms〈N|ss(t)|N〉c = c3(t)ms〈N|ss(0)|N〉c +O(t)

but chiral symmetry relates c3(t) with the Gπ(t) = |〈0|π(t)〉|2

c3(t) =
Gπ(t)
Gπ(0)

I Write the 5d local action that includes the fermion flow

Exercise 8
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Solving the flow equation on the lattice
The continuum equation

dBµ(x, t)
dt

= DνGνµ(x, t);
(
∼ −g2

0
δSYM[B]

δBµ

)

Simplest solution: Wilson flow

a2 d
dt

Vµ(x, t) = −g2
0
δSWilson[V]

δVµ(x, t)
Vµ(x, t)

where

SWilson =
1
g2

0

∑
pl

Tr
(

1− rr rr)
Wilson flow equation solved by setting

Zµ(x, t) = −εg2
0
δSWilson[V]

δVµ(x, t)
∈ su(3)

Vµ(x, t + a2ε) = exp {Zµ(x, t)}Vµ(x, t) ∈ SU(3)

Compute observables from Vµ(x, t) (i.e. the average plaquette)

How do the links Vµ(x, t) = exp[Bµ(t, x)] change with the t?
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Higher order integrators

Zµ(x, t) = −εg2
0
δSWilson[V]

δVµ(x, t)
∈ su(3)

Vµ(x, t + a2ε) = exp {Zµ(x, t)}Vµ(x, t) ∈ SU(3)

This Euler scheme is very slow and inefficient. In practice integrating the flow equa-
tions is numerically expensive!

Define Zi = εZ(Wi) = “Force” [Lüscher ’10]

W0 = Vµ(x, t) ,

W1 = exp
{

1
4

Z0

}
W0 ,

W2 = exp
{

8
9

Z1 −
17
36

Z0

}
W1 ,

Vµ(x, t + a2ε) = exp
{

3
4

Z2 −
8
9

Z1 +
17
36

Z0

}
W2 ,

Very tricky: Exponentials do not commute! Any Runge-Kutta not valid

3rd order Runge-Kutta
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Adaptive step size integrators: Define Zi = εZ(Wi) [Fritzsch et al ’12]

W0 = Vµ(x, t) ,

W1 = exp
{

1
4

Z0

}
W0 ,

W2 = exp
{

8
9

Z1 −
17
36

Z0

}
W1 ,

Vµ(x, t + a2ε) = exp
{

3
4

Z2 −
8
9

Z1 +
17
36

Z0

}
W2 ,

One can have a second estimate of (order 2 integrator)

V′µ(x, t + a2ε) = exp {−Z0 + 2Z1}W0 .

And use the “difference”

d = max
x,µ

{
dist(Vµ(x, t + a2ε),V′µ(x, t + a2ε))

}
.

to tune ε to obtain a target precision δ

ε −→ ε0.95 3
√
δ

d

3rd and 2nd order Runge-Kutta nested
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Step size vs. tflow (Better keep a maximum ε)

 0
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 0.15

 0.2

 0.25

 0.3

 0  1  2  3  4  5  6  7  8

ε

tflow

Tol: 1.0x10-6

Tol: 1.0x10-8

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0  0.02  0.04  0.06  0.08  0.1

Figure: L = 8, 240 steps for δ = 10−6, 1042 for δ = 10−8
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Integrator scaling

10 100

0.001

0.1

10

1,000

100,000

L/a

tim
e/

m
ea
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[h

]
std. RK3
adapt. RK23

Figure: Scaling behaviour of standard Runge-Kutta integrator (RK3) versus adaptive step-size inte-
grator (RK23) for an equivalent setup integrated up to cmax = 0.5
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Solving the flow equation on the lattice

dBµ(x, t)
dt

= DνGνµ(x, t);
(
∼ −g2

0
δSYM[B]

δBµ

)

a2 d
dt

Vµ(x, t) = −g2
0
δSlatt[V]

δVµ(x, t)
Vµ(x, t)

where

Slatt(c(a)
i ) =

1
g2

0

∑
x

Tr

(
1− c(a)

0 rr rr− c(a)
1 r r rr r r

− c(a)
2

�� ��
r rr r

r rp p p p − c(a)
3

��

��pr r rr r
r rp p p ppppppppp

)

I Is this the best option?

I Which lattice action Slatt? What coeficients c(a)
i ??

How do the links Vµ(x, t) = exp[Bµ(t, x)] change with the t?

a2 d
dt

Vµ(x, t) = −g2
0

(
1 +

a2

12
DµD∗µ

)
δSLW[V]

δVµ(x, t)
Vµ(x, t)

The Zeuthen flow
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Symanzik improvement and the Zeuthen flow

I Symanzik effective action describes cutoff effects of all (improved) observables

Slatt = Scont + a2S(2) +O(a4)

〈O〉latt = 〈O〉cont + a2〈OS(2)〉cont +O(a4)

I Aim: Choose Slatt so that S(2) = 0.
I 5D local field theory. Lagrange multiplier imposes flow equation on the bulk.

Scont = −
1

2g2
0

∫
d4x Tr {FµνFµν}−2

∫ ∞
0

dt
∫

d4x Tr {Lµ(x, t)[∂tBµ(x, t)− DνGνµ]} .

I Ansatz for improved action: boundary (c(a)
i and c4) and bulk (c(f )

i ) parameters.

Slatt = Sg(c(a)
i ) + c4a4

∑
x

Tr
{

Lµ(0, x)
[
g2∂a

x,µSw
]}

+ a4
∑

x

∫ ∞
0

dt Tr
{

Lµ(x, t)
[
∂tVµ(x, t)V−1

µ (x, t) + g2∂x,µSg(c(f )
i )
]}

.

I Bulk improvement coefficients can not depend on g2: non-perturbative
improvement.
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