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INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

SUMMARY OF CONVENTIONS

e A

» Mainly concerned with SU(3) Yang-Mills or QCD

o
1 _
8= o / d*x Tr[Fuu Fuw] + / d*x 12:1: D (D + m)ap;

> The lie algebra su(3) is the linear space of all traceless anti-hermitian 3 x 3
matrices

» We choose a basis in su(3), T? witha = 1, ..., 8 such that

4,
Te{T°T'} = - 2%
2
» Greek indices p, v, --- =0, ..., 3 run over space-time coordinates, while latin
indices run over the spatial coordinates i,j,--- = 1,2,3.

» We abreviate integrals over momenta

J= [
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THE FLOW ON THE LATTICE

INTRODUCTION RENORMALIZATION SOME APPLICATIONS

YANG-MILLS GRADIENT FLOW: BASICS (NARAYANAN, NEUBERGER '06; LUSCHER "10)

> Add “extra” (flow) time coordinate f (# x). Define gauge field B, (x, t)
OuBu(x,t) + [Bu(x,t), Bu(x,t)]

Guu(x,t) = 8,Bu(x,t)—
t=0) = Ap(x).

dB, (x,t
d(t ) = D,Guu(x,t); Bu(x,
» Important: t has dimensions of length?. v/8t is a new length scale

o = 15[ = -2

» Since dB,, (x ~
M = DuGu/,L(x’ t) ( %[])
N

dt
Aﬂassical (x) .

Jim B (7)<

» The flow smooths the quantum fluctuations!

At large flow time t — oo gauge field tends to classical solution of the e.o.m
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INTRODUCTION RENORMALIZATION SOME APPLICATIONS

THE FLOW ON THE LATTICE

How 1T works

7

dB,, (x, 1)

dt =DuGupu(x,t); Bu(x,0) = Au(x)

» In perturbation theory we rescale A, — goA,,.
» Expand the flow field in powers of g.

= Aulx) n=1
D=3 Busleighi  Buat0)={ g+@ 73]
n=1

and insert into flow equation

dB (x t) dB, 1(x,t) 5
= =240
T go——— +0)
Guv(x,t) = §00uBy1(x,t) — 08By 1 + O(83)
to obtain
dB‘u’](x, t)

i = 82B,,1(x,t) — 0u8u By 1 (x, 1)

> Heat equation

» Gauge dependent part (Think of Landau gauge 0,A;, = 0)

/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS

THE FLOW ON THE LATTICE

How 1T works

7

dB,, 1(x,t)
dt

> Linear equation in B,, 1 (x, )

» QO-operator is “diagonal” in momentum space. Use

= 81%B/,L,1(x? t) _aﬂaVBV,l(xv t); B;_L,l(x’ 0) =

Bua(x, 1) = /,, e Ba(p,t) </ / o:o éli

to get

dBu,l (xa t) _ / déu,l (pa t) oPx
dt dt

aIZ/B/J.,l (x’ t) - auauBu,l(xy t)

4

Flow equation in momentum space

déu,l(pv t) _ 2 B 0
T = (p 6,&“/ _pMPV> BVﬁl(p’ t)’

Bu,l(pro)

Ap(x).

)

- [ PBuatrer + [ pupBuatp.per
12

=Au(p).
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INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

How 1T works

7

dt

\.

dB Jt - . _
Puspl) _ (P00 = pupe) Bua(p ) Bua(p,0) = Au(p).

Forget about gauge terms: Solution

High momentum modes (small scale fluctuations) are exponentially damped

Bui(p,t) = e 7 Bui(p,0) = e Au(p)

A Gradient flow vs. Heat flow >—~

V8t

V8t

» Heat Flow: Smooths temperature
fluctuations at scales shorter than

» Gradient flow: Smooths quantum 0 0 20 w0 4 50 60 70 @ 9% 100
fluctuations at scales shorter than

We are “looking” at world with a

resolution ~ /8t.
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INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

How 1T works

7

dB Jt - . _
% = — (10w —pupe ) Bua(p ) Bua(p,0) = Au(p).

Forget about gauge terms: Solution
- 2 2~
B,u,,l(pvt) =e v Bu,l(on) =e v Au(P)

High momentum modes (small scale fluctuations) are exponentially damped

7
:4 Exercise 1 | N\

Show that the solution of the flow equation in momentum space is

= 2 2w\
| Bi(p ) = e (gw _ P:l;’ )Ay(p)

\
> Heat Flow: Smooths temperature
fluctuations at scales shorter than

V8t

» Gradient flow: Smooths quantum 0 0 20 w0 4 50 60 70 @ 9% 100
fluctuations at scales shorter than

V8t

15000

10000

5000

We are “looking” at world with a

resolution ~ /8t.
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INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

How 1T works

7

dBp,,l (X7 t)

m = 2B, 1(x,t); B1(x,0) = Au(x).
> Heat kernels are fundamental solutions of the heat equation

x—x/)2
, 1 G 2
(i-e. solutions with the property lim;_,o K(x,x’, t) = §4(x — x"))

» This is “gaussian smearing” with radius /8t!

G=p?

Bua(et) = [ alyK(ry.08,0) = s [ dtye™F 4,0,

\.

A Gradient flow vs. Heat flow >—~

» Heat Flow: Smooths temperature
fluctuations at scales shorter than

V8t

» Gradient flow: Smooths quantum
fluctuations at scales shorter than

V8t

35000
£+ 30000
25000
20000
15000
10000

5000
8/38
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INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

How 1T works

7

dBl,”l(X7 t)

dt = al%B,u,,l (x7 t); B/,L,l(x»o) = All«(x) o

> Heat kernels are fundamental solutions of the heat equation

2
r{ Exercise 2 1 e

Show that

Bua(t) = [ ByK04u0) = s [ 196 T A,0).

is actually a solution to the flow equation to leading order in gy (wo. gauge term).

T G ULT Y
.

A Gradient flow vs. Heat flow >—~

» Heat Flow: Smooths temperature
fluctuations at scales shorter than

V8t

» Gradient flow: Smooths quantum
fluctuations at scales shorter than

V8t

35000
- 30000
25000
20000
15000
10000

5000
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INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

MAIN CHARACTERISTIC OF THE FLOW

( A
» Gauge covariant under gauge transformations that are independent of ¢

B, (x,t)
—r = DuGuu(x b

» Composite gauge invariant operators are renormalized observables defined at
a scale p = 1/+/8t (M. Luscher '10; M. Luscher, P. Weisz ‘11).

» Example (Note that at t = 0 this is terribly divergent oc 1/a%)
1
(E()) = — 5 (TrGuu (x, ) Gpuw (x, 1))

finite quantity for ¢ > 0.
» Continuum limit to be taken at fixed t.
» The energy density (E(t)) will be a main character in this talk!!
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INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

MAIN CHARACTERISTIC OF THE FLOW

( A
» Gauge covariant under gauge transformations that are independent of ¢

B, (x,t)
—r = DuGuu(x b

“~—auge invariant operators are renormalized observables defined at
Exercise 3

Show that the flow equation is gauge covariant

(E(H) = — 3 (TrGu (3, )Gy (3, 1)

finite quantity for ¢ > 0.
» Continuum limit to be taken at fixed t.
» The energy density (E(t)) will be a main character in this talk!!
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INTRODUCTION

RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

FinrrNess oF (E(f)) AT LEADING ORDER IN PT

IN THIS SLIDE ” = ” MEANS UP TO HIGHER ORDER TERMS

7

» Start with the identity
Guv = §00uBy,1(x, 1) — 800y B,,1(x, 1) = 180 / (PuBua — puBua) e
P

» Now

Guuv Gy = =285 / e0H0% 5By (1)Bua (@) — PuduBun (P)Bua(0)]
P4

» Use invariance under translations (add | d*x and get 5*(p + q))
_-2 [ & 2 5
GuvGuv =285 / B1(p) [P Spv — PNPV] B, 1(—p)
2
» Use the solution of the flow equation and gluon propagator
oy, 5
(AL (DAL (—p) = 40w
1 6 —o? [ 2 a i
(E) = =3 (TG Gpu) = B [ &7 [125,0, = pp ] (Tr{Au ()R ()]
P

_3x8 5 [ o 3x8 , 3x8 ,
T g"/,,e = 128722 80 T 1822 SV s




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

FinrrNess oF (E(f)) AT LEADING ORDER IN PT

IN THIS SLIDE ¥ = ” MEANS UP TO HIGHER ORDER TERMS

e A

» Start with the identity
Guv = §00uBy,1(x, 1) — 800y B,,1(x, 1) = 180 / (PuBu1 —puBua) e
P

» Now

GG = —285 / e0H0% 5By (1)Bua (@) — PuduBun (P)Bua(0)]
P4

» Use invariance under translations (add | d*x and get 5*(p + q))

GG =288 [ Bt 0) [P0 = puv] Bua(-p)
r{ Exercise 4 =

» Where does the factors 3 and 8 come from?

» Check that the result is independent on the gauge

» Check that if one uses the solution of the flow equation with the gauge term,
the solution is still the same

T T

Jp
_3x8 5 [ o 3x8 , 3x8 ,
T g"/p = 128722 80 T 1822 SV s




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

SCALE SETTING AND RENORMALIZED COUPLINGS

V81=0.2 fm V81=0.5 fm 5
Y » t2(E(t)) is dimensionless.
HE) » Depends on scale u = 1/v/8¢
0.5— —
t 1 » Ideal candidate for scale setting: fy (M
04 B Lascher JHEP 1008 “10).
0_37 1 » Similar quantities: t1, wp, ... (Borsanyi
F E et. al. "12; R. Sommer Latt, "14).
. ) » Renormalized couplings at scale
-1
0‘1;/, , i ] H= 75
00 ‘ OA(‘)Z ‘ 0.54 ‘ 0.‘06 ‘ 0.‘08 ‘ O‘J ‘ 0.‘12 ‘ 0}14 ‘ 0}16 ‘ O.‘IS ‘ 0.2 3
2
e PEW) = 185 [14+0(5s)]

,{ Scale setting and couplings ‘

‘ A

» Define a reference scale (ty) via

tZ(E(t))‘ =03

t=to
> Define a renormalized coupling (the gradient flow coupling) via

5 1672
ger() = - PEWD)] _ o A




INTRODUCTION RENORMALIZATION

SOME APPLICATIONS THE FLOW ON THE LATTICE

SCALE SETTING AND RENORMALIZED COUPLINGS

V81=0.2 fm \8=0.5 fm
| |

» t2(E(t)) is dimensionless.
» Depends on scale pn = 1/v/8t

» Ideal candidate for scale setting: fy (M

LUscher JHEP 1008 '10).

Exercise 5

(and why??)

» What would you use for scale setting in the case of SU(2)? and for SU(124)?

» How much is the value of agg(p) at u = 1//8ty

T

S

ob— L v L L, |

L P IR IR T
0 0.02 004 006 008 01 012 014 0.16 0.8

t/rg*

,{ Scale setting and couplings }

0.2

PE®) = - 632ng( ) [1+0(2)]

» Define a reference scale (ty) via

géF( )=

()]

1672

——(E()

3

=ty

> Define a renormalized coupling (the gradient flow coupling) via

~

=03

)u=1/\/87 11/38




INTRODUCTION

RENORMALIZATION

SOME APPLICATIONS

THE FLOW ON THE LATTICE

EXERCISES OF THE INTRODUCTION

7

1. Show that the solution of the flow equation in momentum space is

2. Show that

1
Buavt) = [ alyKey0Au0) = ooy [dtye

is actually a solution to the flow equation to leading order in gy (wo. gauge

term).

~ _ 2 v
Bua(p,t)y=e=" (5W - p’;f )

(4t)?

3. Show that the flow equation is gauge covariant

4. In the formula for (E(t)) to leading order

» Where does the factors 3 and 8 come from?
» Check that the result is independent on the gauge

» Check that if one uses the solution of the flow equation with the gauge term, the
solution is still the same
5. Scale setting and couplings

> What would you use for scale setting in the case of SU(2)? and for SU(124)? (and
why??)

» How much is the value of agr(p) at p = 1/+/8f
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INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

Recar (I)

e A

> The gradient flow

Guu(x,t) = 8uBu(x,t) — d,Bu(x,t) + [Bu(x, 1), Bu(x, t)]
dBuT(tx’t) = DuGuu(x’ t)§ B#(x’t:O) :A‘U‘(x)‘

Defines a smooth gauge field By, (x, t) from your fundamental gauge field
Ap(x).

» Gauge invariant composite operators made of B, (x, t) are automatically
renormalized (after renormalization of parameters in the Lagrangian), due to
the exponential suppression (e=") of the high momentum modes of the gauge
field A, (x).

» Action density as the prototipical example

(E(H) = 5 (TG (5, )Gy 3, )

is finite for t > 0

» t2(E(t)) is a dimensionless renormalized quantity (can be computed on the
lattice), that depends on a scale (1 = 1//8¢).
Ideal candidate for reference scale and renormalized coupling definition.

13/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

OVERVIEW

Renormalization
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INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

BEYOND LEADING ORDER
{ 3

» An explicit calculation shows that actually #?(E(t)) is finite to NLO (Lischer '10)

PLE®) = rgabs(e) [1+ ags() + Olgh)]

with ¢ finite

» Actually this is true to all orders, and for all gauge invariant observables made
of the flow field B, (x, t) (Luscher, Weisz ‘11)

» How to prove this? We know how to renormalize composite operators, but...

> B, (x,t)isnotalocal field (i.e. By (x,t) depends on the fundamental field A, (y)
for y # x)!
> One has to see the the flow field B, (x, t) as living in 5d!!

15/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

5D LOCAL FORMULATION (ZINN-JUSTIN ‘86, ZWANZIGER ‘88, LUSCHER, WEIsz '11)

Usually one sees the gradient flow observables in “two steps”
(O[BL)) /DAO (B, Je—SwlAul

where B, is the solution of the flow equation

dB,,(x,t)

Framte DuGupu(x,t); Bu(x,t=0)=A,(x).

Alternatively, we can promote ¢ € (0, 00) to a fifth coordinate and set-up a weird 5d
theory

z = /DBMDLLL e~ 95d(BusLy]

with S54 = Sym + Spuik
S ! / d*x Tr[F ., F ]
YM = TS5 prtpv
23

Sou = -2 / dt / dXTe {L,, (%, £) [04B)s — Dy Goy]}
0

16/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

5D LOCAL FORMULATION (ZINN-JUSTIN ‘86, ZWANZIGER ‘88, LUSCHER, WEIsz '11)

z = /DBMDLM eSsalBulul S5y = Sypp + Spui
1 4
= g / % Te[Fuv Fouv]
Spuk = —2 /O dt / d*xTr {L,,(x,t) [0:By — DuGupl}

> Lyu(x,t) = L},(x,t)T" lives in the adjoint representation, with purely imaginary
components

» The path integral DL,, can be done exactly
/ 'DLueisb“lk = (ath, - DVGV,u) )

and it imposes the flow equation

» Now we have
(OlB]) = 5 [ DEDLOB,Je5Bwts] = [ DBOB,JeWAsl5 01B,0 — D.Gun)
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INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

5D LOCAL FORMULATION (ZINN-JUSTIN ‘86, ZWANZIGER ‘88, LUSCHER, WEIsz '11)

e A

— /DBMDL;L e=SsalBulul; S5y = Sym + Spune
Exercise 6

» What are the dimensions of the field L, (x, t)?
» Name a few symmetries of the action Ss4

Ul — Lj mj T XTI \CL G T [OI0n Do ODnT
0

> Lu(x,t) = L},(x,t)T" lives in the adjoint representation, with purely imaginary
components

» The path integral DL, can be done exactly

/'DLML’_S"“H‘ = (8tB,u - DVGV}L) )

and it imposes the flow equation

» Now we have
(O[B,]) = %/DBDL O[B,,Je~S5alBrobul — /DB O[B,Je=SmlAuls (8B, — DLGuy)

17/38




INTRODUCTION

RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

5D LOCAL FORMULATION (Luscher, Weisz *11)

We can see the theory as a 5d local field theory (Zinn-Justin ‘86, Zinn-Justin, Zwanziger '88)

t

Lagrange multiplier

Spux = fyds | d*x Lo (x,t) {0,BS — D,GY, |

Sboundary =/ d4$ Ga Ga

/\/’

4d space-time

Ssd = Spulk + Sboundary ]

18/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

PROOF OF RENORMALIZABILITY

,{ Key to the proof: in the 5d theory there are no loops in the bulk }—\

Flow for A — ¢* : 9yp(x,t) = 8%p(x, t). Use momentum space

Ssa = %/Plypz 5(p1 + p2)o(p1) [P% =+ mz] o(p2)
+ 2 (PSP (P2)d ()5 (ps)
P1,P2:P3:P4
+ / di‘/p1 . L(p1,t) [ ?(p2, t) ﬁzﬁ(lﬂzvf)]}

If we study correlation functions

@ 0e(-p) = 2 [DePLe ST g, 15(—p,0)
A L
x [1 3] endaae +
P1:P2:P3:P4

In this case flow equation can be exactly solved ¢(p,t) = e*tpzq;(p), and the path
integral [ DL can be analitically done
All loops comes from the “usual” interaction at ¢ = 0

\. J
19/38




INTRODUCTION RENORMALIZATION

SOME APPLICATIONS THE FLOW ON THE LATTICE

PROOF OF RENORMALIZABILITY

,{ Key to the proof: in the 5d theory there are no loops in the bulk }—\

Flow for A — ¢* : 9yp(x,t) = 8%p(x, t). Use momentum space

Ssq = %/ 5(p1 +p2)d(p1) [P% +m2] b(p2)
P1:P2
+ 2 5(p)B(p1) B(p2) B(p2)(pa)
P1:P2:P3,P4
+ dt L(p1, , 25(py, t
/ /Mz{ (P, t [ Plp2. 1) — P o(p2 )]}
@ 0epD) = 2 [Doe e ()
[ e + ..
P1:P2:P3,P4

19/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

PROOF OF RENORMALIZABILITY

,{ Key to the proof: in the 5d theory there are no loops in the bulk }—\
* Exercise 7 Aol N — A2 (v 1) Tleamamantinm enaca

» Why we do not define the flow in Yang-Mills by the equation

dB,, (x, t)
“dit = 32B,(x,1)

??
» Why we did not define the flow in A\ — ¢* by the equation
Btgo(x, t) = (62 - mz)QO(xv t)

> Does the flow correlator (¢(p, t)@(—p, t)) still have divergences? How is this
possible?

» What divergences in (@(p, t)@(—p, t)) have been killed by the flow?

19/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

PROOF OF RENORMALIZABILITY (LiscHer, Weisz 1)

z = /DBMDLM eSsalBulul S5y = Sypp + Spui
1
Sym = —%/d‘ler[P;wF“y]
Spuk = —2 /O dt / d*xTr {L,,(x,t) [0:By — DuGupl}

» Key new element: No loops in the bulk = only divergences at the boundary
t = 0. For t > 0 is like a classical theory!

» Att = 0 we have the usual YM action. Common lore applicable: only coupling is g
(dimensionless) = renormalizable

» We still need to show that we have included all d < 4 operators at the boundary
t = 0. Note that we have a new field L, (x, f)

20/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

ExEercises

e A

7. What are the dimensions of the field L, (x,t)?

8. Name a few symmetries of the action Ssq

9. Why we do not define the flow in Yang-Mills by the equation

dB(x,t)
PulsD _ 52m,(x,0)
??
10. Why we did not define the flow in A — ¢* by the equation
8t§0(x’ t) = (82 - "’12)90(3‘7 t)

11. Does the flow correlator (@ (p, t)@(—p, t)) still have divergences? How is this
possible?

12. What divergences in (@ (p, t)@(—p, t)) have been killed by the flow?

21/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

Recar (II)

» The Yang-Mills flow can be seen as a 5d local quantum field theory.

> The flow equation is imposed by adding “Lagrange multipliers” fields L, (x, t).
The path integral over L, (x, t) gives a delta function.

» Usual tools of quantum field theory can be applied to this theory.

» Very similar to stochastic quantization (Book by Zinn-Justin)

22/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

OVERVIEW

Some applications
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INTRODUCTION RENORMALIZATION

SOME APPLICATIONS THE FLOW ON THE LATTICE

SCALE SETTING

V81 =0.2 fm \8=0.5 fm
XE)L 1
05— —
041 B
03 B
021 Bl
0.1f . Bl
g ) 1
[ /
0 PR T N T T Nt N N NI
0 0.02 004 006 008 0.1 012 014 016 018 02

1/ry?
(M. Luscher JHEP 1008 (2010) 071).

£(E

0.4+

03+ & )
m,=~300 MeV

0.2 2=0.092 fm —— | ]
a=0.077 fm ——
2=~0.065 fm ——

0.1 2~0.054 fm —— | -
perturbative

‘ PR 1 5

0 .
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

(Borsanyi et. al JHEP 1209 (2012) 010).

» Reference scale (¢) via

» Reference scale wy

£(E())|

d
dt

=03

t=ty

t—tz(E(t))‘ ,=03

t=wy

24/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

TOPOLOGICAL SUSCEPTIBILITY

Topological charge

1
Q= [a6 1) = pyzeupoFinFoo()

has important role in non-perturbative physics

» Q: Why is the  meson not a pseudo-goldstone boson (U, (1) puzzle)?

» A: U4 (1) is only a symmetry at the classical level, destroyed by quantum
fluctuations

8u¥7u75¢(X) o q(x) .
In fact in the large N limit

2
ot = [aeonon =&

» How to compute x; on the lattice?

(9(0)9(0)) ~ 1/a*

25/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

TOPOLOGICAL SUSCEPTIBILITY

( A
> Q can be rigorously defined on the lattice via the index

Q=index(D) =ny —n_

of the Neuberger Dirac operator. This can be used to compute x; (Del Debbio ‘05)
» O and topological structure of the vacuum defined via smearing/cooling in
many works in the literature.

» Gradient Flow (and 5d) provides the framework to show that the flow and the
index definitions agree (Cé et al. ‘15)

1
q(xr t) = ﬁguupﬂc,uu(x, t)Gpg(x, t)

26/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

RUNNING COUPLINGS

( A
» Use the gradient flow coupling definition in finite volume

alp) = #£(E(1)) s )

Constant # depends on the choice of boundary conditions (periodic, twisted,
dirichlet (SF), ...)

» We can measure how much changes the coupling when we change pn — /2 by
changing our lattice size L

» Step scaling function

o(u) = a(u/2) o)

27/38




INTRODUCTION RENORMALIZATION SOME APPLICATIONS THE FLOW ON THE LATTICE

RUNNING cOUPLING

SU(3) with Ny = 3. The determination of as(1mz) (ALPHA '16)

22 Fity Lo O Tloop —— ]
Conti Fz‘ﬁl 5 05 Sehrbdinger Funclions mm—
Continuum_(fit —— - N a b
, Contintum (¢ 1 g radient Flow mmmm
ata —e—1= | S 4
= -15 -
218
= oL 4
B 3
S 16 S s b 4
AT
3k 4
14
a5 L —0.2 \\ i
-0.25 \
12 e 4
I TR R
L L L L L L s 008 01 012 0.4 016 018 03 ) )
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 Sy 02 01 0o o8 f
(a/L)? a
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INTRODUCTION

RENORMALIZATION

SOME APPLICATIONS

THE FLOW ON THE LATTICE

RUNNING cOUPLING

[ SU(N) in the limit N — oo and Reduction (M. Garcia Perez et. al ‘14).

Y/uvs1/N, c=0.3

15
1
14
1
1
i
i
x
H
3
B
Ed
N
127 8! 6

IN

afu
L5H - 1-oop
2-loop
T T ¢=0.30, 3param fit SYMMLATT 1
T T ¢=0.30, 3param fit PLAQLATT i
1.4 % *
13] ;
i
it /
1.2 i
i -
i
it
[P
it
11 1
.
¥
¥
¥
¥
R FYad
10k
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[ Simulations done in a lattice with One point. Change of scale by N — N’
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WHAT HAPPENS WHEN | — 0

Any operator at positive flow time has an expansion in terms of renormalized fields
O(x,t) = Y ca(H){0}r(x) + O()

Mixing pattern determined by continuum symmetries!

Example: E(x,t) = Guu (%, £)Gpu (x, 1)
E(x, 1) = c1(1 + c2(){FuwFuv }r(x) + O(F)
What is the renormalization condition for {F . F.. }r(x)?
{FuvFuvIr(x)) =0

So we can determine
a(t) = (E(x,1)) ®)

And this can be used to determine the trace of the EM tensor
Tup(x) = {FuvFuv}r(x) = lim o5 1 () [E(t,x) — (E(t,x))]

But we need ¢, (¢)!!
29/38
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THE FERMION FLOW AND CONDENSATES

{ N\
Flow for fermion fields (M. Luscher, '13)

Ox(x,t) = DuDyux(x,t); D, =08u+ By

with initial condition x (x, f) ;=0 = ¥(x).

» Composite operators O made of x(x, t), x(x, f) renormalize multiplicatively
t>0)

(OR) = (ZX)("“',)/z(O); n and n’ number of x and ¥ fileds.

» Chiral condensate does not mix for t > 0 (M. Liischer, '13)
5(8) = (u(t, x)u(t, x))
» Compute proton strange content (A. Shindler '13).
ms(N[ss(£)|N)e = c3(£)ms(N[ss(0)[N)c + O(t)
but chiral symmetry relates c3(t) with the G () = [{0|=(t))|?

_ Gr(b)
T G (0)

cs(t)
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THE FERMION FLOW AND CONDENSATES

{ N\
Flow for fermion fields (M. Luscher, '13)

Ox(x,t) = DuDyux(x,t); D, =08u+ By

with initial condition x (x, f) ;=0 = ¥(x).

» Composite operators O made of x(x, t), x(x, f) renormalize multiplicatively
t>0)

(OR) = (ZX)("“',)/z(O); n and n’ number of x and ¥ fileds.

" ate does not mix for £ > 0 (M. Luscher, *13)
Exercise 8 N

» Write the 5d local action that includes the fermion flow
. J

» Compute proton strange content (A. Shindler '13).

ms(N[5s(t)|N)e = c3(t)ms(N|ss(0)|N)c + O(f)
but chiral symmetry relates c3(t) with the G () = [{0|«(t))|?

_ Gr(b)
T G (0)

cs(t)
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OVERVIEW

The flow on the lattice
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SOLVING THE FLOW EQUATION ON THE LATTICE

The continuum equation

dB (x t) ( zésm[B])
=D,Gy ,b); ~
it u(x 1) 80 3B,

4 How do the links V,(x,t) = exp[B(t, x)] change with the #? }—\

Simplest solution: Wilson flow
d 55Wilson[v]
2 —Vu(x,t) = —g——Vyu(x,t
a At #(x’ ) 80 §VH(X,t) M(x7 )
where
SWilson _ ZTr (1 _ I:I)
O pl
Wilson flow equation solved by setting
55Wﬂson[V]
Zu(xt) = —egf—r 3
Wt By €O
V(e t+a%) = exp{Z.(x,)}Vu(x,t) €SU(3)
Compute observables from V,(x, t) (i.e. the average plaquette)
\ 33/38
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HIGHER ORDER INTEGRATORS

7

Zl»L(x’ t)

Vo (x, t 4 a%€)

tions is numerically expensive!

\.

3 Eg% S SWilson [V]
OV yu(x, )

exp {Zu(x, 1)} Vpu(x,t)

€ su(3)

)

This Euler scheme is very slow and inefficient. In practice integrating the flow equa-

,{ 3rd order Runge-Kutta }

Wo

Wy
Wa

Vo (x, t + a%e)

\.

Define Z; = eZ(W;) = “Force” (Luscher '10)

V#(xat)a
ex {EZ}W
P 1 0 0>
8 17
—Z1— —Zy ¢ W1,
exp{9 17 3¢ 0} 1

7
exp {ZZZ - §Zl + —Z

Very tricky: Exponentials do not commute! Any Runge-Kutta not valid
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ADAPTIVE STEP SIZE INTEGRATORS: DEFINE Z; = €Z(W;) Frmscrerac12)

,{ 3rd and 2nd order Runge-Kutta nested } N\
Wo = VM (x 9 f) 9
1
W1 = eXp{ZZO} W(),
8 17
W2 = exp{§21 — %ZO}Wl,

3 8 17
Viy(x, t+ aze) exp {ZZZ - §Zl + %ZO} W,

One can have a second estimate of (order 2 integrator)
V), (x,t +a%€e) = exp {—Zo + 2Z1} Wo .
And use the “difference”

d = max {dist(Vu (x, £+ %), VI, (x, £ + aze))} .

to tune e to obtain a target precision ¢

€ —> 60.95\3/§
d 34/38
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STEP SIZE VS. tgow (BETTER KEEP A MAXIMUM €)

0.3 . . ;
’ Tol: 1.0x100
OOEOI: 1.0x10° e
i q
0.25 ,.0035 7.."...0..- eccccce | ) o
0.003 | E L
0.2 0.0025 | g o* 1
0.002 | . o®
L]
.0015 |- E o*
w 015 F . E
0.001 $ g
.0005 TR
01l 0 0.02 0.04 0.06 0.08 Q.8° i
) e
0"
0.05 /
o : ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8

tiow

Figure: L = 8, 240 steps for § = 107°,1042 for § = 10~°
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INTEGRATOR SCALING

100,000 T T T T T 7 T T T T LI I |

x std. RK3
O adapt. RK23 .

1,000

0.1

time/meas. [h]

0.001

Figure: Scaling behaviour of standard Runge-Kutta integrator (RK3) versus adaptive step-size inte-
grator (RK23) for an equivalent setup integrated up to cmax = 0.5
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SOLVING THE FLOW EQUATION ON THE LATTICE

dB (x t) ( 2653{1\/{[3])
=D,Gy ,b); ~
it u(x 1) 80 3B,

,{ How do the links V,(x, ) = exp[By(t, x)] change with the ? }—\

2 Jslatt[v}
8051 (v A
oV (x,t)

d
azﬁV“(x, t) = Viu(x, t)

where

w3 (- -0 -0 Ller)
0 x

» Is this the best option?

» Which lattice action §2%? What coeficients cl.(a) ??

\. J

A The Zeuthen flow } \

d — SSWv]
azaVM(x,t)_ (1+ 13Pm uD ) o0l Vou(x, t)

J
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SYMANZIK IMPROVEMENT AND THE ZEUTHEN FLOW

» Symanzik effective action describes cutoff effects of all (improved) observables

Slatt — geont + uZS(Z) + O(ﬂ4)
(O)att = (O)cont + ﬂz(os(z))com + O(a*)

» Aim: Choose St so that S = 0.
» 5D local field theory. Lagrange multiplier imposes flow equation on the bulk.

geont _ 72172 / A4 Tr {Fpun Fyun }—2 / at / A4 Tr {L.(x, 8)[01B (%, £) — Dy Gu]} -
80 0
» Ansatz for improved action: boundary (c,@ and ¢;) and bulk (cff )) parameters.
glatt — Sg(cf@) + cya ZTr {Lu (0,x) [gzaz,#sw} }
X
vty / dtTr{Lu(x, ) [a,vu(x, OV (8 + gzax,usg(cim)]} .
0
X

» Bulk improvement coefficients can not depend on g?: non-perturbative
improvement.
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