Fermion algorithms

Stefan Schaefer

John von Neumann Institute for Computing, DESY

Lattice Practices 2017

HMC

Momentum Heatbath

Refresh momenta π (Gaussian random numbers)

Molecular Dynamics

Solve numerically MD equations for some MC time au (trajectory) deriving from Hamiltonian $H=\frac{1}{2}(\pi,\pi)+S[U]$.

Acceptance Step

Correcting for inaccuracies in integration.

Model

Schwinger model

2D lattice

U(1) gauge fields

Shares many properties of QCD

- asymptotically free
- confining
- spontaneously broken chiral symmetry

Fields

two component spinor fields on sites $\psi(x,d)$ with d=0,1 gauge fields on the links $U(x,\mu)=e^{-\mathrm{i}\theta(x,\mu)}.$

Action

Gauge action

$$egin{aligned} S_g[U] &= -eta \sum_{ ext{plaq}} ext{Re} U_{ ext{plaq}} \ &= -eta \sum_{ ext{plaq}} \cos(heta(x,0) + heta(x+\hat{0},1) - heta(x+\hat{1},0) - heta(x,1)) \end{aligned}$$

Fermion action

We consider the two flavor model.

$$S_f[U,\psi,ar{\psi}] = \sum_f ar{\psi}_f M(\kappa) \psi_f$$

With $M=1-\kappa H$ and

$$H(x,y) = \sum_{\mu} \delta_{x-\hat{\mu}} (1+\gamma_{\mu}) U_{x-\hat{m}u,\mu} + \delta_{x+\hat{\mu},y} (1-\gamma_{\mu}) U_{x,\mu}^*$$

 γ matrices are the Pauli matrices.

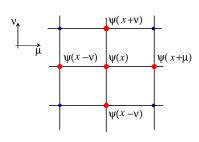
Wilson Dirac operator

With $M=1-\kappa H$ and

$$H(x,y) = \sum_{\mu} \delta_{x-\hat{\mu}} (1+\gamma_{\mu}) U_{x-\hat{m}u,\mu} + \delta_{x+\hat{\mu},y} (1-\gamma_{\mu}) U_{x,\mu}^*$$

 γ matrices are the Pauli matrices.

Spinor fields $\psi(x,d) \rightarrow \text{complex psi[i], i=1...2V}$



$$\begin{pmatrix} \times & \times & 0 & 0 & 0 & \times \\ \times & \times & \times & 0 & 0 & 0 \\ 0 & \times & \times & \times & 0 & 0 \\ 0 & 0 & \times & \times & \times & 0 \\ 0 & 0 & 0 & \times & \times & \times \\ \times & 0 & 0 & 0 & \times & \times \end{pmatrix}$$

The Dirac operator

Dirac operator D can be viewed as a matrix acting in \mathbb{C}^{2V}

For **Wilson**, **staggered** and **domain wall** fermions this matrix is sparse.

Application of D on vector scales $\propto V$.

Methods to solve Dirac equation based on

Matrix × vector

Itererative methods, huge applied math literature.

Integrating out the fermions

 ψ are Grassmann fields. Not suitable for computer simulation.

$$\int [d\psi][dar{\psi}]e^{\sum_far{\psi}_fM\psi_f}=(\det M[U])^2=\det M^\dagger[U]M[U]$$

because for the Wilson action

$$\gamma_5 M \gamma_5 = M$$

Can again be cast into the form of an action

$$\det M^\dagger M = e^{\log \det M^\dagger M}$$

Have given up locality, important ingredient of QFT.

First step away from a natural formulation

Fermion determinant

$$S_f[U] = -\log \, \det M^\dagger M$$

Virtually impossible to compute.

Computation of determinant takes $\propto V^3$ steps.

Numerically highly problematic.

Would lose sparcity of fermion matrix in the process.

How to proceed?

For all MCMC algorithms, ratios of probabilities have to be computed.

$$e^{-(S_g[U]-S_g[U'])}\prod_frac{\det M_f[U]}{\det M_f[U']}$$

even an infinitesimal change needs a matrix inversion

$$\det(M[U] + \delta M) = \det M[U] \left(1 + \operatorname{tr}\{M[U]^{-1}\delta M\} + \dots\right)$$

Makes link update algorithms virtually impossible.

Change due to one link requires (expensive) operation on full lattice.

Naturally led to algorithms updating many links at a time.

What makes fermions special?

Local, natural formulation not suitable

Many choices, which seem logical, but are not unique.

Can have a large influence on algorithm performance.

Fermions Formulation of the theory

Pseudofermions

Pseudofermions

PETCHER, WEINGARTEN'81

$$\det Q^2 \propto \int [\mathrm{d}\phi] [\mathrm{d}\phi^\dagger] \, e^{-(\phi,\,Q^{-2}\phi)} \; ,$$

$$Q = \gamma_5 M$$

Gaussian integral ightarrow apply transformation $\phi = \mathbf{Q}\,\eta$

$$\int [\mathrm{d}\eta] [\mathrm{d}\eta^\dagger] \, e^{-(\eta,\,\eta)} = \int [\mathrm{d}\phi] [\mathrm{d}\phi^\dagger] \, \mathrm{det}^{-2} Q \, e^{-(\phi,\,Q^{-2}\phi)}$$

Determinant is the **Jacobian** of this transformation.

 ${\it Q}$ is Hermitian

Comments

$$\det Q[U]^2=rac{1}{Z_\phi}e^{-(\phi,\,Q[U]^{-2}\phi)}$$

- Essential for making fermions amenable to computer simulations
- lacktriangle Pseudofermion ϕ can be generated with simple heatbath

Generate Gaussian complex-valued quark field η

$$P[\eta] \propto e^{-(\eta,\eta)}$$

Multiply with Q

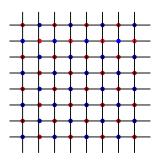
$$\phi = Q\eta$$

PF action nonlocal.

Even-odd preconditioning

The Wilson Dirac operator connects only neighboring sites.

Label them "even" and "odd".



$$M = egin{pmatrix} M_{ee} & M_{eo} \ M_{oe} & M_{oo} \end{pmatrix}$$

 M_{oo} and M_{ee} are site-diagonal matrices.

Even-odd preconditioning

Matrix identity

For the determinant this means

$$\det M = \det M_{oo} \, \det (M_{ee} - M_{eo} M_{oo}^{-1} M_{oe}) \equiv \det M_{oo} \det \hat{M}$$

with \hat{M} the Schur complement.

In the following, I will mostly write M or $Q=\gamma_5 M$. In practice, this frequently means \hat{M} or \hat{Q} .

Partition function

Include pseudofermions in path integral.

$$Z = \int [dU] [d\pi] [d\phi] [d\phi^{\dagger}] \, e^{-rac{1}{2}(\pi,\pi) - S_g[U] - (\phi,rac{1}{Q^2}\phi) + 2\log \det Q_{oo}}$$

 S_g : gauge action

effective fermion action for $N_f=2$.

$$S_{f, extit{ extit{eff}}} = (\phi,rac{1}{\hat{Q}^2}\phi) - 2\log {
m det}Q_{oo}$$

HMC

Momentum and pseudofermion Heatbath

Refresh momenta π Refresh pseudofermions $\phi \to \text{kept}$ fixed during trajectory

Molecular Dynamics

Solve numerically MD equations for some MC time au (trajectory) deriving from Hamiltonian $H=\frac{1}{2}(\pi,\pi)+S[U]$.

Acceptance Step

Correcting for inaccuracies in integration.

Pseudofermions

PETCHER, WEINGARTEN'81

$$\det Q^2 \propto \int\! \mathrm{d}\phi^\dagger \mathrm{d}\phi\, e^{-(\phi,Q^{-2}\phi)}$$

- Works only for pairs of degenerate flavors Solution: take square root → PHMC, RHMC
- Force evaluation expensive: 2 solutions of Dirac eq.

$$F_{
m pf} = -(\phi,\,Q^{-2}\,\delta Q\,Q^{-1}\,\phi) + {
m h.c.}$$

■ Seems somewhat unnatural Start with manifestly local action → quite non-local expression

Berlin Wall

Status 2000 Quarks $16 \times$ heavier than in nature. No perspective even with 2010 computers.

Coarse lattices $a \approx 0.1 \text{fm}$ (the typical length scale is 1fm)

Cost of a simulation (Ukawa Lattice 2001)

$$ext{Cost} = C \left[rac{\#conf}{1000}
ight] \cdot \left[rac{m_q}{16m_{ ext{phys}}}
ight]^{-3} \cdot \left[rac{L}{3 ext{fm}}
ight]^5 \cdot \left[rac{a}{0.1 ext{fm}}
ight]^{-7}$$

C pprox 2.8 Tflops year

Pseudofermions

PETCHER, WEINGARTEN'81

$$\det Q^2 \propto \int [\mathrm{d}\phi] [\mathrm{d}\phi^\dagger] \, e^{-(\phi,\,Q^{-2}\phi)}$$

- HMC + single pseudofermion action not successful
- Compare

$$F_{
m pf} = \delta(\phi,\,Q^{-2}\phi)$$
 and $F_{
m ex} = -\delta{
m tr}\,\log\,Q^2$

- lacksquare $F_{
 m pf}$ is "stochastic estimate" of $F_{
 m ex}$ At beginning of the trajectory $\langle F_{
 m pf}
 angle_\phi=F_{
 m ex}$
- lacksquare Very large fluctuations in $F_{
 m pf}$

$$|F_{
m pf}|\gg |F_{
m ex}|$$

Fermions Modifications

Determinant Splitting

Insight

- Need better estimate of determinant.
- Frequency splitting.

Mass preconditioning

Hasenbusch'01, Hasenbusch, Jansen'03

$$\det Q^2 = \det rac{Q^2}{Q^2 + \mu^2} \det (Q^2 + \mu^2)$$

- Each determinant represented by pseudo-fermion
- "Pauli-Villars" for fermion force
- \blacksquare more intermediate $\mu \to \text{Noise}$ reduction in force.
- \blacksquare success depends on choice of μ .

Urbach et al'04

Numerical examples

Action

- $lacksquare N_{
 m f}=2+1$ NP improved Wilson fermions
- Iwasaki gauge action
- 64×32^3 lattice with a = 0.09fm
- studied extensively by PACS-CS

AOKI ET AL'09,'10

- lacksquare $m_\pi=200 {
 m MeV}$
- $\mathbf{m}_{\pi}L=3$

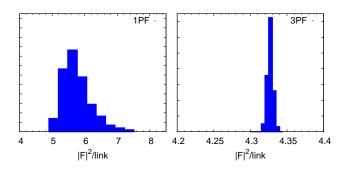
Algorithm

M. LÜSCHER, S.S.'12

- Reweighting to avoid stability problems.
- Generated with public openQCD code. http://cern.ch/luscher/openQCD

Effect of determinant factorization

Forces for light quark, 20 configurations. $\mu_1=0.05$, $\mu_2=0.5$



- Fluctuations of force not much reduced.
- Fluctuations in **norm** squared of force:
 Spread reduced by more than factor 100.
 (Different scale!)

Understanding the improvement

Framework

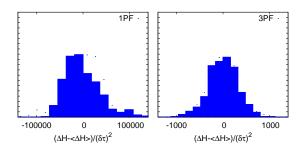
CLARK, JOO, KENNEDY, SILVA'11

Shadow Hamiltonian of symplectic integrators

$$\tilde{H} = H + (c_1 \partial_x S \partial_x S - c_2 \pi_x \pi_y \partial_x \partial_y S) \epsilon^2 + \dots$$

- Large cancellation between the two terms
 → potential for optimization.
- \blacksquare 2nd order minimum norm integrators: minimum of $c_1^2+c_2^2$ Omelyan, Mrygold, Folk'03
- Symplectic integrators profit from reduced fluctuations in norm of force.

Numerical examples



- $lacktriangledown \Delta H = ilde{H} H$, fermions only.
- Second order min. norm Omelyan integrator.
- Much larger step-size possible.

Factorizations

Hasenbusch

Hasenbusch'03

$$\det Q^2 = \det \frac{Q^2}{Q^2 + \mu_1^2} \, \det \frac{Q^2 + \mu_1^2}{Q^2 + \mu_2^2} \cdots \det (Q^2 + \mu_N^2)$$

RHMC

Kennedy, Horvath, Sint'99, Clark, Kennedy'07

$$\det Q^2 = \prod_{i=1}^N \det \sqrt[N]{Q^2}$$

Domain decomposition

Lüscher '04

$$\det Q = \det Q_{\mathrm{block}} \det R$$

RHMC

For realistic simulations need single (non-degenerate) quark flavors

$$\det Q^2 = W \det R^{-1}$$

with R a rational approximation to $(Q^2)^{-1/2}$

Zolotarev approximation

The Zolotarev rational function

$$R_{n,\epsilon}(x) = A \frac{(x+a_1)(x+a_3)\cdots(x+a_{2n-1})}{(x+a_2)(x+a_4)\cdots(x+a_{2n})}$$

with degree (n,n) approximates the function $f(x)=1/\sqrt{x}$ with the smallest possible deviation

$$\delta = \max_{\epsilon \le x \le 1} |1 - \sqrt{x} R_{n,\epsilon}(x)|$$

RHMC

For realistic simulations need single (non-degenerate) quark flavors

$$\det Q^2=W\det R_{n,\epsilon}^{-1}(r_b^{-2}Q^2)$$

Need stable upper and lower bounds r_a and r_b of spectrum of Q^2 .

Can be a problem for light Wilson fermions.

Two choices for W

- Acceptance step of the metropolis
- Reweighting factor included in the measurement

PHMC

Frezzotti, Jansen '98

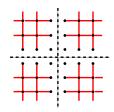
Similar to RHMC

Use polynomial approximation to $1/\sqrt{x}$.

No need to solve Dirac equation.

Might have advantage due to simplicity for well-conditioned Q^2 .

Domain decomposition



- Domain decomposition
 - → Divide the lattice in blocks

$$\det D = \det D_{\mathrm{block}} \cdot \det D_{\mathrm{R}}$$

- Do not update links connecting blocks
 → longer autocorrelations
- Good for slow communication.
- Brings back some locality to the theory

Reweighting

No need to simulate action S, can generate ensembles with a different action.

$$\begin{split} \langle A \rangle &= \frac{1}{Z} \int [dU] e^{-S[U]} A[U] \\ &= \frac{Z'}{Z} \frac{1}{Z'} \int [dU] e^{-S'[U]} (e^{-(S[U] - S'[U]} A[U]) \\ &= \frac{\langle AW \rangle'}{\langle W \rangle'} \end{split}$$

With $W=e^{-(S[U]-S'[U]}$ and

$$Z=\int [dU]e^{-S[U]}$$
 and $Z'=\int [dU]e^{-S'[U]}$ (1)

Can be used to improve simulations.

Has its limitations: large fluctuations in W will lead to large errors.

Twisted mass reweighting

Lüscher, Palombi'09

Wilson Dirac operator can have zero eigenvalues.

Action $-\log \det D$ becomes infinite.

Configuration space separated in disconnected sectors.

Ergodicity with continuous algorithms compromized.

Simulate with action that does not allow zero eigenvalues

$$D o D + i \gamma_5 \mu$$

 μ needs to be small enough in order for reweighting to work.

Summary

Fermion action $-\mathrm{tr}\log\!D$ cannot be simulated directly.

Use pseudofermions together with matrix factorization

Several factorizations lead to working setups.

Need of solving the Dirac equation in each force evaluation.