Flag manifold σ -models and Ricci flow

Dmitri Bykov

Max-Planck-Institut für Physik (München) Steklov Mathematical Institute (Moscow)

18 June 2020, DESY Hamburg

Based on several papers of the author, including a recent one with D. Lüst and an upcoming one

Flag manifolds.

In this talk we will consider relativistic σ -models with worldsheet \mathbb{R}^2 and target space \mathscr{M} . We will be interested in the case when \mathscr{M} is a flag manifold:

$$\mathscr{F}_{n_1,\ldots,n_m} = \frac{SU(N)}{S(U(n_1) \times \cdots \times U(n_S))}, \qquad \sum_{i=1}^S n_i = N$$

There are several encounters of such sigma-models in mathematical physics.

First, they arise as effective continuum theories of spin chains with SU(N)-symmetry. (SU(2)-case: [Haldane '83])

The idea is that the flag manifold is the space of Néel vacua of the classical chain:

- Geometric theory: [DB '11-'12]
- Analysis of spin chains: [Affleck et.al. '17 (SU(3)), '19 (SU(N))]
- Discrete 't Hooft anomalies [Tanizaki & Sulejmanpasic '18, Seiberg et.al. '18]

Flag manifolds.

- Flag manifold sigma-models arise in the [Cho '80]-[Faddeev-Niemi '97-'99] approach to SU(N) gauge theories, and in the case of complete flags these admit Hopfion solutions, since $\pi_3\left(\frac{U(N)}{U(1)^N}\right) \simeq \mathbb{Z}$ [Amari, Sawado '18]
- Describe the worldsheet theory of non-Abelian vortices in certain 4D (SUSY) gauge theories [Bolokhov, Shifman, Yung, '09] [Ireson '19]
- In this talk I will discuss mostly the sigma-models that are (conjecturally) integrable. These were considered in:

[Young '06, Beisert & Lücker '12] – \mathbb{Z}_S -graded spaces,

[DB '14-19] - General complex homogeneous spaces,

[Costello & Yamazaki '19] - Chern-Simons theory,

[Bytsko '94, Brodbeck & Zagermann '00, Delduc, Kameyama, Lacroix, Magro, Vicedo '19] – Ultralocality of Poisson brackets: $\{\mathcal{L}_{\lambda}(x), \mathcal{L}_{\mu}(y)\} \sim [\mathbf{r}(\lambda-\mu), \mathcal{L}_{\lambda} \otimes \mathbf{1} + \mathbf{1} \otimes \mathcal{L}_{\mu}] \delta(x-y)$

Flag manifold models from the PCM: nilpotent orbits

Let $g \in SU(N)$, $g^{-1}dg = i (\Phi dz + \overline{\Phi} d\overline{z})$. $\overline{\partial} \Phi + i [\overline{\Phi}, \Phi] = 0$. Flatness of Noether current, Principal Chiral Model Impose the condition $\Phi^S = 0$ (closure of nilpotent orbit in \mathfrak{gl}_N)

Assume

$$\Phi^S = 0, \quad \text{and} \quad \Phi^{S-1} \neq 0 .$$

The map $\Phi(z, \overline{z})$ satisfying the E.O.M. defines a flag

$$0 \subset \operatorname{Ker}(\Phi) \subset \operatorname{Ker}(\Phi^2) \subset \cdots \subset \operatorname{Ker}(\Phi^S) \simeq \mathbb{C}^N$$

This is a point in

$$\mathscr{F} := \frac{U(N)}{U(\kappa_1) \times \cdots \times U(\kappa_S)}, \quad \text{where}$$

$$\kappa_j = \dim \operatorname{Ker}(\Phi^j) / \operatorname{Ker}(\Phi^{j-1}) = \text{number of Jordan blocks of size at least } i.$$

Claim: the map $\Sigma \to \mathscr{F}$ is a solution of a flag manifold sigma-model. This is a map to a single orbit: type does not change due to e.o.m. [DB, 2019] I will now describe the model.

Complex structures.

To this end one needs a complex structure \mathcal{J} on \mathcal{F} .

It is defined by an ordering of the factors in the denominator $\frac{SU(N)}{S(U(n_1)\times \cdots \times U(n_S))}$ [Borel & Hirzebruch '58].

 \mathcal{F} may then be interpreted as the manifold of embedded linear subspaces:

$$0 \in V_1 \subset \ldots \subset V_S = \mathbb{C}^N, \quad \dim_{\mathbb{C}} V_k := d_k = \sum_{i=1}^k n_i.$$

 $\mathscr{F} = G/H$, the Lie algebra g admits the standard decomposition:

$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}, \qquad [\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h}, \qquad [\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$$

In the presence of \mathcal{J} one has a more detailed decomposition of the Lie algebra:

$$\mathfrak{g}_{\mathbb{C}} = \mathfrak{h}_{\mathbb{C}} \oplus \mathfrak{m}_{\mathbb{C}} = \mathfrak{h}_{\mathbb{C}} \oplus \mathfrak{m}_{+} \oplus \mathfrak{m}_{-}, \qquad \mathscr{J} \circ \mathfrak{m}_{\pm} = \pm i \, \mathfrak{m}_{\pm} \,.$$

$$[\mathfrak{h}, \mathfrak{m}_{\pm}] \subset \mathfrak{m}_{\pm} \,, \qquad \text{(Homogeneity of } \mathscr{J} \text{)}$$

$$[\mathfrak{m}_{\pm}, \mathfrak{m}_{\pm}] \subset \mathfrak{m}_{\pm} \qquad \text{(Integrability of } \mathscr{J} \text{)}.$$

The complex structure and the Lie algebra.

The decomposition of the Lie algebra. $\,$

The metric and B-field.

Decompose \mathfrak{m}_+ into irreps of \mathfrak{h} : $\mathfrak{m}_+ = \bigoplus_{1 \leq i < j \leq S} (\mathfrak{m}_+)_{ij}$,

Maurer-Cartan one-form $J := -g^{-1}dg = \sum_{i,j=1}^{S} J_{ij}$.

$$ds^{2} = \mathcal{G}_{ij}dX^{i}dX^{j} = \sum_{1 \le i < j \le S} a_{ij}\operatorname{tr}(J_{ij}J_{ji}), \qquad a_{ij} > 0$$

$$B = \sum_{1 \le i < j \le S} b_{ij} \operatorname{tr}(J_{ij} \wedge J_{ji})$$

If $b_{ij}=a_{ij},\,B$ is called the fundamental Hermitian form of the metric $\mathscr G$ w.r.t. one of the complex structures $\mathscr J$ on $\mathscr F\colon B=\mathscr G\circ\mathscr J$.

- Kähler metric: $a_{ij}=z_i-z_j$ (Kirillov-Kostant-Souriau form $B={\rm Tr}(z\,J\wedge J)$).
- Normal metric: $a_{ij} = 1$, $ds^2 = \text{Tr}(J_{\mathfrak{m}}J_{\mathfrak{m}})$ ('Killing metric') Geodesics are homogeneous [Alekseevsky & Arvanitoyeorgos '07].

Action:
$$S[\mathscr{G},\mathscr{I}] := \int_{\Sigma} d^2z \, \|\partial X\|_{\mathscr{G}}^2 + \int_{\Sigma} X^* B \sim \int_{\Sigma} d^2z \, G_{m\overline{n}} \, \partial U^m \overline{\partial U^n}$$

Integrability.

The conjecture of integrability of the models is based on the following evidence:

• The zero-curvature representation

$$A_u = \frac{1+u}{2} K_z dz + \frac{1+u^{-1}}{2} K_{\overline{z}} d\overline{z}, \qquad u \in \mathbb{C}^*,$$

where K = Noether current (flat).

A more general class – complex hom. spaces [DB '16]: toric bundles over flag manifolds [Wang '54].

- Involutivity of the integrals of motion [Delduc et. al. '19]
- Explicit classical solutions $\left(\frac{U(3)}{U(1)^3}\right)$ [DB '16], generalizing [Din, Zakrzewski '80]
- Analogy with the case of symmetric spaces (review: [Zarembo '17])
- Explicit form of anomaly in non-local charge: similar to Grassmannian case [DB '19]

Complex symmetric spaces: $[\mathfrak{m}_+, \mathfrak{m}_+] = 0 \ (\Rightarrow [\mathfrak{m}_+, \mathfrak{m}_-] \subset \mathfrak{h}).$

Symmetric spaces of SU(N): Grassmannians $G(m,N) := \frac{SU(N)}{S(U(m)\times U(N-m))}$

The gauged linear sigma-model (GLSM).

Kähler case: GLSM \leftrightarrow Kähler quotients.

Grassmannian: $G(m, N) = \text{Hom}(\mathbb{C}^m, \mathbb{C}^N) /\!/ U(m)$. Lagrangian

$$\mathcal{L} = \text{Tr}((\overline{D}U)^{\dagger}(\overline{D}U)), \qquad \overline{D}U := \overline{\partial}U - i U \overline{\mathcal{A}}, \qquad U^{\dagger}U = \mathbb{1}_m.$$

[Cremmer, Scherk '78, D'Adda, Lüscher, di Vecchia '78].

Flag manifold with Kähler metric: GLSM ↔ Nakajima (quiver) varieties [Nakajima '94, Nitta '03, Donagi & Sharpe '08].

Flag manifold with 'Killing metric' (not Kähler for S>2): a 'gauge field' [DB '17]

The Costello-Yamazaki approach.

[Costello-Yamazaki '19]: a semi-holomorphic 4D Chern-Simons theory on $\Sigma \times \mathscr{C}$, where $\Sigma =$ 'topological plane' $(z, \overline{z}) \rightarrow$ worldsheet to-be

 $\mathscr{C} = \text{complex curve } (w, \overline{w}) \text{ with a holomorphic differential } \omega = dw \neq 0.$

 $K_{\mathscr{C}} = 0$ implies $\mathscr{C} \simeq \mathbb{C}, \mathbb{C}^*, E_{\tau}$. The action:

$$S_{\rm CS} = \frac{1}{\hbar} \int_{\Sigma \times \mathscr{C}} \omega \wedge \operatorname{Tr} \left(A \wedge (dA + \frac{2}{3} A \wedge A) \right) ,$$

where $A = A_z dz + A_{\overline{z}} d\overline{z} + A_{\overline{w}} d\overline{w}$. One couples this theory to two $\beta \gamma$ systems, with target space $T^*\mathcal{M}$, where \mathcal{M} is a complex homogeneous space:

$$\begin{aligned} & w_1 & & \\ & w_2 & & \\ & & \mathcal{C}^* & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

The Costello-Yamazaki approach.

'Light-cone' gauge $A_{\overline{w}}=0$, solve for $A_z,A_{\overline{z}}$. In this gauge the equations are

$$\partial_{\overline{z}} A_z - \partial_z A_{\overline{z}} + [A_z, A_{\overline{z}}] = 0,$$

$$\partial_{\overline{w}} A_z = \delta^{(2)}(w - w_1) \sum_a p_i v_a^i \tau_a$$

$$\partial_{\overline{w}} A_{\overline{z}} = \delta^{(2)}(w - w_2) \sum_a \overline{p}_{\overline{i}} v_a^{\overline{i}} \tau_a.$$

Family $A_z(w)$, $A_{\overline{z}}(w)$ of flat connections, depending meromorphically on w!

Key observation: Green's function $\overline{\partial}_{\overline{w}}^{-1} = \text{classical } r\text{-matrix [Belavin, Drinfeld '80]}$

Rational case: $r(w) = \frac{\sum \tau_a \otimes \tau_a}{w} \in \mathfrak{g} \otimes \mathfrak{g}$, i.e. $r(w) = \frac{1}{w} \in \text{End}(\mathfrak{g})$.

Trigonometric case: let $\mathfrak{g} = \mathfrak{g}_+ \oplus \mathfrak{g}_-$ (complex structure on G, Manin triple, etc.), then $r_{\text{comp.}}(u) = \frac{\sum \tau_a^+ \otimes \tau_a^-}{1-u} - \frac{\sum \tau_a^- \otimes \tau_a^+}{1-u^{-1}} \in \mathfrak{g} \otimes \mathfrak{g}$, i.e. $r_{\text{comp.}}(z) = \frac{\Pi_+}{1-u} - \frac{\Pi_-}{1-u^{-1}} \in \text{End}(\mathfrak{g})$.

The Costello-Yamazaki approach.

Upon integrating out A_z , $A_{\overline{z}}$, we get (rational case)

$$\begin{split} S &= \int \, d^2z \, \left(p_i \partial_{\overline{z}} q^i + \overline{p}_i \partial_z \overline{q}^i + \mathbf{r}_{w_1 - w_2} \, \left(p_i v_a^i \, \tau_a, \overline{p}_{\overline{i}} v_a^{\overline{i}} \, \tau_a \right) \right) \right) = \\ &= \int \, d^2z \, \left(p_i \partial_{\overline{z}} q^i + \overline{p}_i \partial_z \overline{q}^i + \frac{1}{w_1 - w_2} \sum |p_i v_a^i|^2 \right) = \\ &= \text{integrate out} \quad p, \overline{p} \quad \text{(the fiber of} \quad T^* \mathcal{M}) \sim \\ &\sim \int \, d^2z \, \left(G_{i\overline{j}} \partial_{\overline{z}} q^i \partial_z \overline{q}^{\overline{j}} \right) \qquad \text{with} \qquad G_{i\overline{j}} = \left(\sum v_a^i v_a^{\overline{j}} \right)^{-1} \end{split}$$

Invertibility \leftrightarrow Homogeneous space

Rational case: the flag manifold σ -model described earlier. [DB, 2019]

But this also provides deformations of those models, trigonometric and elliptic. We pass over to this topic, starting with deformations of the \mathbb{CP}^{n-1} model.

The sausage model.

Simplest deformation: 2D target space with a U(1)-isometry [DB-Lüst, 2020]

$$ds^2 = \sum_{i,j=1}^2 G_{ij} dX^i dX^j = \frac{1}{4g(\mu)} d\mu^2 + g(\mu) d\phi^2.$$

For what $q(\mu)$ is the model integrable?

Mechanical reduction always integrable (2 integrals of motion).

Generalized Pohlmeyer map: set $G_{ij} \partial X^i \overline{\partial} X^j = \cosh \chi$.

Sinh-Gordon equation replaced by $\overline{\partial}\partial\chi - 2g''(\mu) \sinh\chi = 0$.

Add the equation for μ : $\partial \overline{\partial} \mu - 2 g'(\mu) \cosh \chi = 0$.

The two eqs. follow from a single Lagrangian if $g(\mu) = b + a \cosh \mu$:

$$\begin{split} \mathcal{L} &= \frac{1}{2} \partial \mu \overline{\partial} \mu + \frac{1}{2} \partial \chi \overline{\partial} \chi + 2a \, \cosh \mu \, \cosh \chi \, = \\ &= \left(\frac{1}{2} \partial \widetilde{\mu} \, \overline{\partial} \widetilde{\mu} + a \, \cosh \left(\sqrt{2} \widetilde{\mu} \right) \right) + \left(\frac{1}{2} \partial \widetilde{\chi} \, \overline{\partial} \widetilde{\chi} + a \, \cosh \left(\sqrt{2} \widetilde{\chi} \right) \right) \end{split}$$

Ricci flow in the Kähler case.

The (Kähler) metric of the 'sausage' [Fateev, Onofri, Zamolodchikov, 1994]

$$ds^{2} = \left(\frac{1}{s} - s\right) \frac{|dW|^{2}}{(s + |W|^{2})(\frac{1}{s} + |W|^{2})}, \qquad 0 < s < 1.$$

 \mathbb{CP}^{N-1} also has a generalized Kähler deformation [Demulder et.al. 2020], constructed along the lines of [Delduc, Magro, Vicedo 2013]. The *B*-field has the form $B=\sum_i b_i \wedge d\phi_i$, so *T*-dualizing all angles we get rid of it.

T-dual geometry is Kähler with potential [DB-Lüst, 2020]

$$\mathfrak{K} = \sum_{j=1}^{n} (Z_j \overline{Z}_{j-1} - \overline{Z}_j Z_{j-1}) + 2 \sum_{j=1}^{n} P(t_j - t_{j-1} - 2\tau), \qquad t_j = Z_j + \overline{Z_j},$$

where $P(t) = \text{Li}_2(e^{-t}) + \frac{t^2}{4}$.

 \mathcal{K} not invariant under $Z_i \to Z_i + \delta \alpha_i$. T-duality does not preserve the Kähler property (otherwise T: chiral \leftrightarrow twisted chiral [Rocek, Verlinde 1991]).

The metric satisfies the (simple) Ricci flow equation $-\frac{dg_{i\bar{j}}}{d\tau}=4\,R_{i\bar{j}}$ with $s=e^{N\tau}.$

A new look at σ -models [DB, to appear]

The $\beta\gamma$ deformed Lagrangian (s = def. parameter, $\Phi = A_z$): [DB, 2019]

$$\begin{split} \mathcal{L} &= \mathrm{Tr} \left(V \overline{\mathcal{D}} U \right) + \mathrm{Tr} \left(V \overline{\mathcal{D}} U \right)^{\dagger} + \mathrm{Tr} \left(r_s^{-1} (\Phi) \overline{\Phi} \right) \\ \overline{\mathcal{D}} U &= \overline{\partial} U + i \, U \overline{\mathcal{A}} + i \, \overline{\Phi} U \, . \end{split}$$

 r_s is the classical r-matrix: $r_s = \frac{s}{1-s} \pi_+ + \frac{1}{1-s} \pi_- + \frac{1}{2} \frac{1+s}{1-s} \pi_0$ (solution of CYBE) Φ enters quadratically \to integrate it out.

Very fruitful approach: introduce a 'Dirac boson'

$$\Psi_a = \left(\frac{U_a}{\overline{V}_a}\right), \qquad a = 1, \dots, N.$$

Then

$$\mathcal{L} = \overline{\Psi_a} D\!\!\!/ \Psi_a + (r_s)^{cd}_{ab} \left(\overline{\Psi_a} \frac{1+\gamma_5}{2} \Psi_c \right) \left(\overline{\Psi_d} \frac{1-\gamma_5}{2} \Psi_b \right) \,. \label{eq:local_energy}$$

 σ -model = chiral gauged Gross-Neveu model (in bosonic incarnation)!

- Chirality: integrate out V-variables \rightarrow return to the geometric form of the model.
- The deformation is manifestly Hermitian

The β -function [DB, to appear]

Feynman rules:

Diagrams contributing to the β -function at one loop:

 β -function:

$$\beta_{ij}^{kl} = \sum_{p,q=1}^{N} \left((r_s)_{ip}^{kq} (r_s)_{pj}^{ql} - (r_s)_{ip}^{ql} (r_s)_{pj}^{kq} \right)$$

Ricci flow [DB, to appear]

The Ricci flow equation $\dot{r}_{ij}^{kl} = \beta_{ij}^{kl}$ has a remarkably simple solution $s = e^{N\tau}$ (was conjectured in [Costello-Yamazaki 2019]).

Alternatively, return to the σ -model and solve the geometric Ricci flow equations

$$\begin{split} -g_{ij} &= R_{ij} + \frac{1}{4} H_{imn} H_{jm'n'} g^{mm'} g^{nn'} + 2 \nabla_i \nabla_j \Phi , \\ -\dot{B}_{ij} &= -\frac{1}{2} \nabla^k H_{kij} + \nabla^k \Phi H_{kij} , \\ -\dot{\Phi} &= \mathrm{const.} - \frac{1}{2} \nabla^k \nabla_k \Phi + \nabla^k \Phi \nabla_k \Phi + \frac{1}{24} H_{kmn} H^{kmn} \end{split}$$

 \mathbb{CP}^1 : the solution $s=e^{2\tau}$ (N=2) found in [Fateev, Onofri, Zamolodchikov, 1994] \mathbb{CP}^{N-1} : Ricci flow interpolates between a cylinder $(\mathbb{C}^{\times})^{N-1}$ in the UV (asymptotic freedom) and a 'round' projective space of vanishing radius in the IR.

Generalized Einstein metrics on flag manifolds [DB, to appear]

Consider the Ricci flow for the metric

$$-g_{ij} = R_{ij} + \frac{1}{4} H_{imn} H_{jm'n'} g^{mm'} g^{nn'} + \nabla_i \mathcal{D}_j \Phi + \nabla_j \mathcal{D}_i \Phi , \qquad \mathcal{D} \Phi = d\Phi - \mathcal{E} .$$

The structure of the blow-up (strong coupling) is as follows: $g_{ij} \sim (1-s) (g_{\text{hom.}})_{ij}$.

For the homogeneous metric $\mathcal{D}_i \Phi = 0$. Since $s = e^{N\tau}$, in the limit $-g_{ij} \to N(g_{\text{hom.}})_{ij}$ Homogeneous (Killing) metric $g_{\text{hom.}}$ satisfies a generalized Einstein condition

$$R_{ij} + \frac{1}{4} H_{imn} H_{jm'n'} g_{\text{hom.}}^{mm'} g_{\text{hom.}}^{nn'} = N (g_{\text{hom.}})_{ij}.$$

For Grassmannians H = 0, i.e. $R_{ij} = N(g_{\text{hom.}})_{ij}$.

N= first Chern number of the tangent bundle

 $c_1(G(m,N)) = N[\mathscr{C}] \ (\mathscr{C}=\text{generator}) - \text{independent of } m!$

 β -function for a symmetric space = dual Coxeter number (independent of H in $\frac{G}{H}$). We observe this for non-symmetric spaces – can be proven directly!

Anomalies [DB, to appear]

Euclidean chiral \mathbb{C}^{\times} -symmetry [Zumino, 1977; Mehta 1990] is crucial:

$$U \to \lambda U, \quad V \to \lambda^{-1} V, \quad \text{where} \quad \lambda \in \mathbb{C}^{\times}.$$

Remember $U \in \mathbb{C}^N$, so to pass to \mathbb{CP}^{N-1} we need to gauge the chiral symmetry. However the symmetry is typically anomalous: recall Schwinger's effective action

$$\mathcal{S}_{\text{eff.}} = \frac{\xi}{2} \int dz \, d\overline{z} \, F_{z\overline{z}} \frac{1}{\triangle} F_{z\overline{z}} \,, \qquad F_{z\overline{z}} = i \left(\partial \overline{\mathcal{A}} - \overline{\partial} \mathcal{A} \right)$$

Not invariant under the complexified gauge transformations

 $\mathcal{A} \to \mathcal{A} + \partial \alpha$, $\overline{\mathcal{A}} \to \overline{\mathcal{A}} + \overline{\partial} \overline{\alpha}$. To cancel the anomaly one can add fermions minimally:

$$\mathcal{L} = \overline{\Psi_a} \not \!\!\!\!D \Psi_a + (r_s)_{ab}^{cd} \left(\overline{\Psi_a} \frac{1 + \gamma_5}{2} \Psi_c \right) \left(\overline{\Psi_d} \frac{1 - \gamma_5}{2} \Psi_b \right) + \overline{\Theta_a} \not \!\!\!\!D \Theta_a ,$$

$$\Psi, \Theta \in \operatorname{Hom}(\mathbb{C}, \mathbb{C}^2 \otimes \mathbb{C}^N) .$$

Incidentally these are the same fermions that cancel the anomaly in Lüscher's nonlocal charge [Abdalla et.al., 1981-84]!

Conjecture: all such flag manifold models with fermions are quantum integrable

Inhomogeneous gauge [DB, to appear]

Instead of working in a standard gauge like $\overline{U}U = 1$, we can choose

$$U_N = 1$$
 (inhomogeneous gauge)

Varying the action w.r.t. \overline{A} , we get UV = 0, i.e. $V_N = -\sum_{j=1}^{N-1} U_j V_j$. Substituting in the Lagrangian, we get

$$\begin{split} \mathcal{L} &= \sum_{k=1}^{N-1} \left(V_k \overline{\partial} U_k - \overline{V}_k \partial \overline{U}_k + \beta |V_k|^2 \right) + \\ &+ \sum_{l,m=1}^{N-1} a_{lm} \left| U_l \right|^2 |V_m|^2 + \gamma \left| \sum_{p=1}^{N-1} U_p V_p \right|^2 + \alpha \left(\sum_{k=1}^{N-1} |U_k|^2 \right) \left| \sum_{p=1}^{N-1} U_p V_p \right|^2 \\ &+ \underbrace{\sum_{l,m=1}^{N-1} a_{lm} \left| U_l \right|^2 |V_m|^2 + \gamma \left| \sum_{p=1}^{N-1} U_p V_p \right|^2 + \alpha \left(\sum_{k=1}^{N-1} |U_k|^2 \right) \left| \sum_{p=1}^{N-1} U_p V_p \right|^2}_{\text{quartic vertices}} \end{split}$$

Instead of a σ -model we obtained a theory with polynomial interactions! Parallel with Ashtekar variables:

- Interactions are polynomial
- Degenerations are allowed (compare with nilpotent orbits)

Conclusion and outlook.

- Integrable sigma-models beyond symmetric target spaces [DB '14⁺, Costello-Yamazaki 2019]
- Related to PCM through nilpotent orbits [DB '19]
- GLSM formulation beyond Kähler target spaces [DB '17]
- Hermitian deformations of these models [Costello-Yamazaki 2019, DB to appear]
- The anomaly of the bosonic model similar to the one for symmetric spaces [Abdalla, Abdalla, Gomes '81-'84, DB '19]
- Cancel it by adding fermions (minimally/ supersymmetrically?), bosonized version [Basso & Rej '12]
- Pohlmeyer reduction [Pohlmeyer '76, Grigoriev-Tseytlin '08, DB-Lüst '20] Toda theories with additional linear fields. Example: $\frac{U(3)}{U(1)^3}$

$$2 \partial \overline{\partial} X_1 + e^{2(X_1 - X_2)} - e^{2(X_3 - X_1)} + e^{2(X_1 - X_3)} \| (U_{13})_z \|^2 - e^{2(X_2 - X_1)} \| (U_{21})_z \|^2 = 0$$

$$\overline{\partial} (U_{13})_z + e^{2(X_3 - X_2)} \overline{(U_{32})_z} - e^{2(X_2 - X_1)} \overline{(U_{21})_z} = 0$$

$$\cdots$$

General case?

Conclusion and outlook.

- σ -models = gauged chiral Gross-Neveu models [DB, to appear]
- The one-loop β -function is universal for all of these models (one-loop exact?)
- (Complicated) Ricci flow eqs. have a simple (ancient) solution, presumably interpolating between the homogeneous metric and a cylinder
- Relation to deformations of \mathbb{Z}_k -graded spaces, i.e. analogues of symmetric space deformations of [Fateev '96, Klimčík '02⁺, Delduc, Magro, Vicedo '13]
- Dual Toda-like theories, $\mathfrak{gl}(N|N)$ symmetry [Fateev '17], [Litvinov '19]
- Construct the full quantum theory: S/R-matrix, thermodynamic Bethe ansatz. Possibly using the ODE/IQFT approach
 [Bazhanov, Lukyanov, Zamolodchikov 98⁺, Bazhanov, Kotousov, Lukyanov '17]
- ...