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Flag manifolds.

In this talk we will consider relativistic o-models with worldsheet R? and target
space .# . We will be interested in the case when . is a flag manifold:

_ SU(N) =
T = 50 ) x - x U(ns))’ 2 =N

=1

There are several encounters of such sigma-models in mathematical physics.
First, they arise as effective continuum theories of spin chains with SU (N )-symmetry.

(SU(2)-case: [Haldane ’83])
The idea is that the flag manifold is the space of Néel vacua of the classical chain:

oottt 1
Vool
— Geometric theory: [DB '11-12]

— Analysis of spin chains: [Affleck et.al. "17 (SU(3)), '19 (SU(N))]
— Discrete ‘t Hooft anomalies [Tanizaki & Sulejmanpasic 18, Seiberg et.al. "18]
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Flag manifolds.

— Flag manifold sigma-models arise in the [Cho ’80]-|Faddeev-Niemi '97-'99] approach

to SU(N) gauge theories, and in the case of complete flags these admit Hopfion

solutions, since ms (ll]]((l];’g,) ~ 7 [Amari, Sawado '18|

— Describe the worldsheet theory of non-Abelian vortices in certain 4D (SUSY) gauge
theories [Bolokhov, Shifman, Yung, '09] [Ireson '19]

— In this talk I will discuss mostly the sigma-models that are (conjecturally) integrable.
These were considered in:

[Young 06, Beisert & Liicker 12| — Zg-graded spaces,

[DB ’14-19] — General complex homogeneous spaces,

[Costello & Yamazaki ’19] — Chern-Simons theory,

|Bytsko ‘94, Brodbeck & Zagermann ‘00, Delduc, Kameyama, Lacroix, Magro, Vicedo ’19] —
Ultralocality of Poisson brackets: {Lx(z), L.(y)} ~ [r(A—p), LA®@1+1RL,] 6(z—y)

:
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Flag manifold models from the PCM: nilpotent orbits

Let g € SU(N), g 'dg = i (®dz +  dZ).
0D +i[®, 0] =0. Flatness of Noether current, Principal Chiral Model
Impose the condition % =0 (closure of nilpotent orbit in gly)

Assume
®° =0, and @' £0.

The map ®(z,z) satisfying the E.O.M. defines a flag
0 C Ker(®) C Ker(®®) C --- C Ker(®°) ~ €V

This is a point in

U(N)
U(k1) X -+ x U(ks)’
rj = dim Ker(®7)/Ker(®’~') = number of Jordan blocks of size at least i .

where

F =

Claim: the map ¥ — % is a solution of a flag manifold sigma-model
This is a map to a single orbit: type does not change due to e.o.m. [DB, 2019]
I will now describe the model.
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Complex structures.

To this end one needs a complex structure ¢ on Z.

It is defined by an ordering of the factors in the denominator
[Borel & Hirzebruch ’58|.

% may then be interpreted as the manifold of embedded linear subspaces:

SU(N)
S(U(n1)x--xU(ng))

k
0EVIC...CVs=C", dimeVii=dp=) mi.
i=1
F = G/H, the Lie algebra g admits the standard decomposition:
g=bhom,  [b,bjCh  [hmCm

In the presence of ¢ one has a more detailed decomposition of the Lie algebra:

gc=bc@®mc=hcPmy Sm_, Jomy=ximy.

[h,m4] C my, (Homogeneity of _#)
my,mi] C my (Integrability of 7).
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The complex structure and the Lie algebra.

The decomposition of the Lie algebra.
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The metric and B-field.

Decompose m into irreps of h: m4 = S1<icj<s(my)ij,

s
Maurer-Cartan one-form J := —g~'dg = > Ji;.
ij=1
ds® = %;dX'dX7 = > ayte(JiJp),  ai; >0
1<i<j<s
B = Z bijtr(Ji; A Jji)

1<i<j<s

If bi; = aij, B is called the fundamental Hermitian form of the metric ¢ w.r.t. one
of the complex structures # on #: B=%o 7.

e Kéhler metric: a;; = 2z; — z; (Kirillov-Kostant-Souriau form B = Tr(z J A J)).

e Normal metric: a;; =1, ds® = Tr(JuJw) (‘Killing metric’)
Geodesics are homogeneous |Alekseevsky & Arvanitoyeorgos '07].

Action: [, 7] ::/ &= [0X 2, +/ X'B ~ /d2zamaumaﬁn
>z 3 >
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Integrability.

The conjecture of integrability of the models is based on the following evidence:

e The zero-curvature representation

1+u’

1
:1+uszz—|— 5

Ay

K=dz, ueCr,
where K = Noether current (flat).

A more general class — complex hom. spaces [DB ’16]:

toric bundles over flag manifolds [Wang 54].

Involutivity of the integrals of motion [Delduc et. al. '19]

Explicit classical solutions ( g((fs)s) [DB ’16], generalizing [Din, Zakrzewski '80]
Analogy with the case of symmetric spaces (review: [Zarembo ’17])

Explicit form of anomaly in non-local charge:

similar to Grassmannian case [DB ’19]

Complex symmetric spaces: [my,m4] =0 (= [m4, m_] Ch).

Symmetric spaces of SU(N): Grassmannians G(m, N) := SU(N)

S(U(m)xU N —m))
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The gauged linear sigma-model (GLSM).

Kaéhler case: GLSM <« Kéhler quotients.
Grassmannian: G(m, N) = Hom(C™, C")//U(m) . Lagrangian

¢ =Te(DU)'(DU)), DU:=dU —iUA, UU=1,.

|Cremmer, Scherk ’78, D’Adda, Liischer, di Vecchia '78].

Flag manifold with Kahler metric: GLSM < Nakajima (quiver) varieties
[Nakajima ’94, Nitta ’03, Donagi & Sharpe ’08].

Flag manifold with ‘Killing metric’ (not Kéhler for S > 2): a ‘gauge field’ [DB ’17]

ds_1

A= , A=A, A ‘reduced’ gauge field!
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The Costello-Yamazaki approach.

[Costello-Yamazaki *19]: a semi-holomorphic 4D Chern-Simons theory on ¥ x %', where
¥ = ‘topological plane’ (z,z) — worldsheet to-be

¢ = complex curve (w,w) with a holomorphic differential w = dw # 0.

K« = 0 implies ¥ ~ C,C*, E,. The action:

SCS:% / w/\’IY(A/\(dA—f—%A/\A)) :
EXE

where A = A.dz + Azdz + Awdw. One couples this theory to two B+ systems, with
target space T"M, where M is a complex homogeneous space:

w w . _ i
[ B Saef = / &z (p: D' + 5, DG
>

N,
€ ~ C*

where Déwl)qi =8¢ — Z(Ai—wl))avfl .
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The Costello-Yamazaki approach.

‘Light-cone’ gauge Az = 0, solve for A, Az. In this gauge the equations are

62Az - 8zAE+ [AZ7AE] = 07
OwA, = 5(2)(11) —w1) Zpivé Ta

OwAz = 6% (w — wy) ZE’UZ Ta -

Family A.(w), Az(w) of flat connections, depending meromorphically on w!
Key observation: Green’s function 5%1 = classical r-matrix |Belavin, Drinfeld ’80]
Rational case: r(w) = % €g®g, ie r(w) =L € End(g).

Trigonometric case: let g = g4+ @®g— (complex structure on G, Manin triple, etc.), then

‘r+®'r_ 'r_®'r+ . I T
Tcomp. (u) = = [ Eljufla €9g®g, ie. Teomp.(2) = 1= — 7=.=1 € End(g).

1—u
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The Costello-Yamazaki approach.

Upon integrating out A, Az, we get (rational case)
S = [ @ (poed’ + 507 + o (pvk e Brvi ) =
=/d2z (pzéLq +P0T + > il )

= integrate out p,p (the ﬁber of T"M) ~

-1
~ / d*z (Gﬁagqiaij) with (Z vava>
Invertibility <> Homogeneous space

Rational case: the flag manifold o-model described earlier. [DB, 2019]

But this also provides deformations of those models, trigonometric and elliptic.
We pass over to this topic, starting with deformations of the CIP"~! model.
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The sausage model.

Simplest deformation: 2D target space with a U(1)-isometry [DB-Liist, 2020]

2
ds® = Y GidX'dX’ =

i,j=1

b

2 2
1900 dp” +g(p) do”.

For what g(u) is the model integrable?
Mechanical reduction always integrable (2 integrals of motion).
Generalized Pohlmeyer map: set Gy; 0X*0X? = cosh x.

Sinh-Gordon equation replaced by — 99x — 2¢” () sinhy = 0.
Add the equation for u: 90y — 2¢' () coshx =0.

The two egs. follow from a single Lagrangian if g(u) = b+ a cosh i :
1, = 1, 5
Z = iauau + iaxax + 2a cosh p cosh y =

_ (%8;75;7 +a cosh (ﬁﬁ)) + (%8%5% +a cosh (ﬁ%))
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Ricci flow in the Kahler case.

The (Kéhler) metric of the ‘sausage’ [Fateev, Onofri, Zamolodchikov, 1994]

1 |dW |2
ds* == —s , 0<s<1.
(s ) (s + W) (5 + W)

CPV~1 also has a generalized Kéhler deformation [Demulder et.al. 2020], constructed
along the lines of [Delduc, Magro, Vicedo 2013]. The B-field has the form B =
> bi Ades, so T-dualizing all angles we get rid of it.

i

T-dual geometry is Kéhler with potential [DB-Liist, 2020]

K= (ZZj1—2;Z;1)+2 Y Plty—t;-1—27), t=2;+7,

Jj=1 Jj=1
where P(t) = Liz(e™ ") + %.

X not invariant under Z; — Z; 4+ da;. T-duality does not preserve the Ké&hler
property (otherwise T': chiral +» twisted chiral [Rocek, Verlinde 1991]).

dg =
The metric satisfies the (simple) Ricci flow equation — 5;1 =4 R with s = eNT.

: :
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A new look at o-models [DB, to appear]

The B~ deformed Lagrangian (s = def. parameter, ® = A.): [DB, 2019]

£ =Te (VIU) + T (VIU)' +Tr (r; 1(3))
PU =0U +iUA+i®U.

rs is the classical r-matrix: rs = 5= 74 + 1; T_ + % ﬁz mo (solution of CYBE)

® enters quadratically — integrate it out.
Very fruitful approach: introduce a ‘Dirac boson’

\Pa:<‘(iz>, a=1,...,N.

Then
L =TGPV, 4 () <\Ta1 t xv) <w71‘7wb) .

o-model = chiral gauged Gross-Neveu model (in bosonic incarnation)!

— Chirality: integrate out V-variables — return to the geometric form of the model.
— The deformation is manifestly Hermitian
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The S-function [DB, to appear]

Feynman rules:

z2—21

— >

N el X
: zZ2 (3 + J

Diagrams contributing to the S-function at one loop:

A k 7
J l J k
B-function:
N
ki k 1 L Nk
=0 (0% - )5 r)s)
p,q=1

16/22
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Ricci flow [DB, to appear]

Wkl

The Ricci flow equation 7;; fjl has a remarkably simple solution s = e™N7™

(was conjectured in [Costello Yamazaki 2019]).

Alternatively, return to the o-model and solve the geometric Ricci flow equations
—gij=Rij+ - H,mnHJm g™ g 42V,
; 1
—Bi; = —§V Hyij + V*® Hyij

. 1 1
—® = const. — 5 VIV @ + VIOV® + o Hemn H™"
CP!: the solution s = 2" (N = 2) found in [Fateev, Onofri, Zamolodchikov, 1994]
CPY~1: Ricci flow interpolates between a cylinder (C*)N~! in the UV (asymptotic
freedom) and a ‘round’ projective space of vanishing radius in the IR.
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Generalized Einstein metrics on flag manifolds [DB, to appear]

Consider the Ricci flow for the metric
1 ’ ’
—g;j = Rij + ZHimnHjm’n'gmm gnn + VfoI) + VjDﬁI), DO =dd - €&.

The structure of the blow-up (strong coupling) is as follows: g;; ~ (1 — $) (ghom. )ij-

N

For the homogeneous metric D;® = 0. Since s = €7, in the limit —gi; — N (ghom. )i;

Homogeneous (Killing) metric gnom. satisfies a generalized Einstein condition

1 mm/ TLTL,
Rij + ZHimnHjm’n’ghom.ghom. =N (ghom.)ij .
For Grassmannians H = 0, i.e. Rij = N (ghom.)ij-
N= first Chern number of the tangent bundle

c1(G(m, N)) = N [¢] (¥=generator) — independent of m!

Q

B-function for a symmetric space = dual Coxeter number (independent of H in
We observe this for non-symmetric spaces — can be proven directly!
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Anomalies [DB, to appear]

Euclidean chiral C*-symmetry [Zumino, 1977; Mehta 1990] is crucial:

U=SAU, VoAV, where Ae C™.
Remember U € CV, so to pass to CPY ™! we need to gauge the chiral symmetry.
However the symmetry is typically anomalous: recall Schwinger’s effective action

i .

Fest. = %/dzdszzAFﬁ, F.z = i (0A — DA)

Not invariant under the complexified gauge transformations
A — A+ 0a, A — A+ 0a. To cancel the anomaly one can add fermions minimally:

2 =Tov,+ 00 (W50 ) (W2 ) venpe.,
¥, 0 € Hom(C,C* @ CV).

Incidentally these are the same fermions that cancel the anomaly in Liischer’s
nonlocal charge [Abdalla et.al., 1981-84]!

Conjecture: all such flag manifold models with fermions are quantum integrable

: :
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Inhomogeneous gauge [DB, to appear]

Instead of working in a standard gauge like UU = 1, we can choose
Unv=1 (inhomogeneous gauge)

— N—-1
Varying the action w.r.t. A, we get UV =0, i.e. Vi = - > U;V;.
Substituting in the Lagrangian, we get =t

N-1 N
_ _ _§ NE
&= (VidUy — VidUx + BVil) + 5 Bloglz1 — 2|,
k=1 —@9—
21 . 22
N—-1 N-1 5 N—-1 R N—-1 5 K3
+ Z i [UP Vil + v | Z UpVp| + Z |Uk| |Z UpVa| q r
I m=1 p=1 k=1 =1

quartic vertices sextic vertices

Instead of a o-model we obtained a theory , ’
with polynomial interactions! Parallel with Ashtekar variables: 081 gt S

e Direct derivation for S;(S%zﬂ?) [Brodbeck & Zagermann ‘00|

e Interactions are polynomial
e Degenerations are allowed (compare with nilpotent orbits)
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Conclusion and outlook.

e Integrable sigma-models beyond symmetric target spaces
[DB '14%, Costello-Yamazaki 2019]
e Related to PCM through nilpotent orbits [DB ’19]
e GLSM formulation beyond Kéhler target spaces [DB 17]
e Hermitian deformations of these models [Costello-Yamazaki 2019, DB - to appear]
e The anomaly of the bosonic model similar to the one for symmetric spaces
[Abdalla, Abdalla, Gomes '81-'84, DB ’19]
e Cancel it by adding fermions (minimally/ supersymmetrically?),
bosonized version [Basso & Rej '12]

e Pohlmeyer reduction [Pohlmeyer 76, Grigoriev-Tseytlin ‘08, DB-Liist '20|
U(3)
U3

Toda theories with additional linear fields. Example:

200X, + 2 X17X2) _ 2(Xa=X1) 4 20-X0) | (1735, |12 = 22X | (U ), |2 = 0

B(Urs)s + 237X ([Ty,), — 22~ X0 ([), = 0

General case?
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Conclusion and outlook.

e og-models = gauged chiral Gross-Neveu models [DB, to appear]

e The one-loop S-function is universal for all of these models (one-loop exact?)

e (Complicated) Ricci flow egs. have a simple (ancient) solution, presumably
interpolating between the homogeneous metric and a cylinder

e Relation to deformations of Zg-graded spaces, i.e. analogues of symmetric
space deformations of [Fateev 96, Kliméik ‘02T, Delduc, Magro, Vicedo ’13]

e Dual Toda-like theories, gl(N|N) symmetry [Fateev '17], [Litvinov '19]

e Construct the full quantum theory: S/R-matrix, thermodynamic Bethe ansatz.
Possibly using the ODE/IQFT approach

[Bazhanov, Lukyanov, Zamolodchikov 98+, Bazhanov, Kotousov, Lukyanov ’17]
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