# NanoAOD kinematic reconstruction

Jonas Rübenach EXO Meeting April 3, 2020





#### **Data and cuts**

- 2018 data with 59.69 fb<sup>-1</sup> (Golden JSON)
- Recommended triggers for MuonEG, SingleMuon, DoubleMuon, EGamma
- Recommended MET filters applied
- Electron and muon scale factors applied

- Electron ID: Isolation WP90
- Muon ID: Cut-based medium, loose iso
- Exactly two opposite sign leptons
- Leading lepton p<sub>T</sub> > 25 GeV, Subleading > 20 GeV
- M<sub>||</sub> > 20 GeV
- Z window cut (from 76 GeV to 106 GeV)
- At least 2 jets
- Jet p<sub>T</sub> > 30 GeV
- At least one b-tagged jet
- MET > 40 GeV in same flavor channels

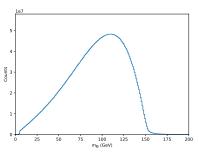
### tt kinematic reconstruction

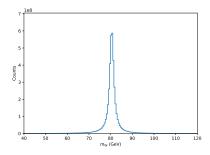
using Sonnenschein's method

Want to know the four momenta of the two neutrinos Inputs from NanoAOD:

- Four momenta of lepton and antilepton
- Four momenta of bottom quark and bottom antiquark
  - Use b-tagged jets
  - If not exactly two b-tagged jets: choose by most likely  $m_{\rm lb}$
- MET  $p_T$  and  $\varphi$

#### Setup:

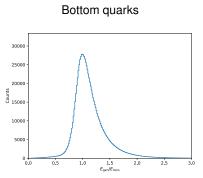

- 1. Set  $m_{\nu} = m_{\bar{\nu}} = 0$
- 2. Set  $m_{\rm t} = m_{\rm f} = 172.5$
- 3. Set  $m_{W^+}$  and  $m_{W^-}$  randomly

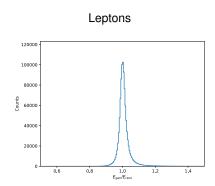

Algebra now yields 4 solutions, which may or may not have an imaginary part.

Vary lepton and quark inputs within uncertainty: more real solutions

Mass of lepton/bottom-quark system and W bosons

Made from 2018 NanoAOD  $t\bar{t} \rightarrow 2I2\nu$ 

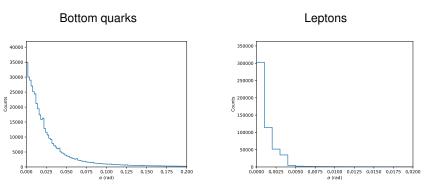



No problems observed here.

**Energy variation factors** 

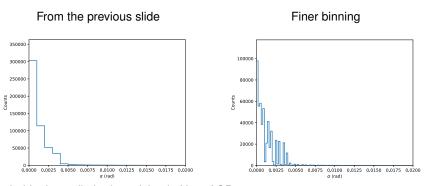
Made from 2018 NanoAOD tt  $\to$  2l2 $\nu$  Matching between Gen and Reco done only by  $\Delta R < 0.3$ 






No problems observed here either.

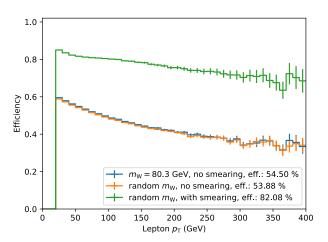
**Angle variation factors** 


Made from 2018 NanoAOD tt  $\to$  2l2 $\!\nu$  Matching between Gen and Reco done only by  $\Delta R < 0.3$ 

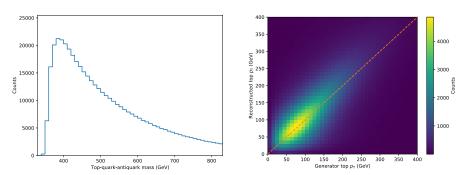


Would like to have finer binning for the lepton distribution

Angle variation factor for leptons


Increased binning to 100 bins. Got weird pattern in the distribution.




Probably due to limited precision in NanoAOD.

#### **Reconstruction efficiencies**

Efficiency: Number of events with real solution / Total number of events



#### Reconstructed top quantities



Reconstruction might have a slight tendency for higher  $p_T$ .

## Thank you