

Generator level selection dataset

Whole graph classification

James Kahn (KIT), Yannick Bross (LMU) | 8th April 2020

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

Overview

Selective background Monte Carlo simulation project (CHEP 2019, ErUM collab. meeting)

- Categories:
 - Whole graph classification
 - Bias mitigation/quantification
- Use generator level info to predict usefulness of events
- Usefulness definition depends on physics WG

Dataset goal

Maximise simulation speedup while keeping biases to an acceptable level.

Dataset (in preparation)

Project used 300k events (250/50 split) from three WGs:

- Hadronic $B^{0/+}$ meson reconstruction ($\sim 5\%$)
- Time-dependent CP violation (\sim 0.2%)

Model input

- Fixed number of properties per particle
- Adjacency matrix describing relations
- Particle ID (PDG code)
- Production momentum/position
- Mass/energy/charge

Labels

One binary label per graph

Bias observables

- Event-level kinematics (whole graph vars)
- Physics motivated specialised for WGs
- Derived from reconstructed particles
 - can't be used as network input

Performance metrics

Relative simulation speedup

- Interested in how much faster we can simulate one event.
- Calculation is simple¹ but a function of TPR, FPR, and source dataset.
 - Non-differentiable
- Will vary for each WG

Bias quantification

- Yannick Bross (LMU) handling this.
- High-level observables describing whole graph
- KL divergence between all true and true positives
- Can (should) be used during training

Performance judgement: Highest speedup with $KL_{div} < X$ across all bias observables.

¹Assuming trivial inference time Generator level selection dataset - James Kahn (KIT), Yannick Bross (LMU)

Questions

- Is there a template we can use? Kaggle?
- ② Graph data format?
 - Feature and adjacency matrices (what we used so far)?
 - Feature and edge list (PyTorch Geometric)?
 - ...
- On we provide code examples for loading data? Also for calculating metrics (differs for each dataset)?
- Features normalised?
- **5** Dataset size limit ($\mathcal{O}(GB)$)?