Update on exclusive ψ' and J/ψ in photoproduction (Weighted Muon Corrections for BAC)

G. Grzelak

ZEUS Analysis Forum, DESY/Vidyo meeting, 14-Apr-2020

G. Grzelak (UW)

 $\psi(2S)/J/\psi(1S)$ in PHP

14-Apr-2020 1 / 26

Outlook: R : ψ' to J/ψ cross section ratio

last ZAF meeting in February:
 weighted muon corrections for B/RMUO and FMUON presented

- agreement for 2- and 4-prong channels
- simplified approach: single muon correction for all trigger levels and off-line reconstruction
- the same scheme was now repeated for BAC (see control plots)
- ... and for combined selection i.e.: at least one muon in F/B/RMUO or BAC (see control plots)
- conclusions and plans for next weeks

New corrections: example of $(p_z, p_t; \eta)$ BAC - DATA

BAC DATA eff ALL

- RBAC-BBAC-FBAC (along eta)
- probability (%) to fire FLT-SLT-TLT-REC by muon on $(p_z, p_t; \eta)$ grid
- current choice for small *p*_t, *p*_z: 250 MeV per bin
- size of the grid is subject to systematics

New corrections: example of $(p_z, p_t; \eta)$ BAC - MC

BAC MC eff ALL

- RBAC-BBAC-FBAC (along eta)
- different composition of J/ψ , ψ' , Bethe-Heitler MC was tested
- current choice: reweight the MC samples keep the J/ψ : ψ' : BH ratio as in DATA

BAC muon efficiency: after corrections

- fBAC,rBBAC, FBAC,RBAC efficiency after corrections
- full FLT-SLT-TLT-REC chain for single muon (*p*_t, *p*, *p*_z respectively)

< 17 ≥

∃ ► < ∃</p>

BAC muon efficiency: after corrections

- only muons with p > 3 GeV (from plateau)
- full FLT-SLT-TLT-REC chain for single muon (θ_{μ})

Muons in BAC: corrected θ distribution of μ^{\pm}

• BAC muons: $\theta_{\mu^{\pm}}$ in mass bins: ALL, BH-IoM, BH-hiM, J/ψ , ψ'

- up: θ_{μ^-}
- down: θ_{μ^+}

< ロト < 同ト < ヨト < ヨト

BAC di-muon mass distribution: W1

ZEUS Preliminary

W1: (50-80) GeV

events

- events yield from double-Gaussian fit for signal + continuous BH BG
- TFracFitter (histogram template fit) for resonant BG subtraction

BAC di-muon mass distribution: W2

ZEUS Preliminary

W2: (80-130) GeV

events

▲ 同 ▶ ▲ 国 ▶

BAC di-muon mass distribution: W3

ZEUS Preliminary

W3: (130-180) GeV

< 61 b

BAC W distribution: 2-prong

W: 2-prongs

- BAC W distribution, 2-prong
- (dominated by J/ψ and BH)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

BAC W distribution: 4-prong

- BAC W distribution, 4-prong
- clean ψ' sample

- T

BAC |t| distribution: 2-prong

- BAC |t| distribution, 2-prong
- (dominated by J/ψ and BH)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

BAC |t| distribution: 4-prong

- BAC |t| distribution, 4-prong
- clean ψ' sample

- T

R (BAC data only): ψ' to J/ψ weighted mean value

R psi' to J/psi 2PR, 4PR (stat err only) vs. W (EFFACC corr + EXTRA CTD FLT for 4PR)

- ratio of no. of events corrected for BR and effic/acceptance and CDT FLT track veto efficiency
- black: weighted mean value for 2- and 4-prong channels

F/B/RMUO or BAC: di-muon mass distribution

ZEUS Preliminary

- combined selection: at least one muon in F/B/RMUO or BAC (all trigger levels plus off-line reconstruction)
- all W bins

events

F/B/RMUO or BAC: di-muon W distribution

W: 2-prongs

 combined selection: at least one muon in F/B/RMUO or BAC (all trigger levels plus off-line reconstruction)

G. Grzelak (UW)

 $\psi(2S)/J/\psi(1S)$ in PHP

3 1 4 3

\[
 < \[
 </p>

F/B/RMUO or BAC: di-muon |t| distribution

 combined selection: at least one muon in F/B/RMUO or BAC (all trigger levels plus off-line reconstruction)

G. Grzelak (UW)

 $\psi(2S)/J/\psi(1S)$ in PHP

R (F/R/BMUO or BAC): ψ' to J/ψ weighted mean value

- ratio of no. of events corrected for BR and effic/acceptance and CDT FLT track veto efficiency
- black: weighted mean value for 2- and 4-prong channels

- BR: Branching Ratios (J/ψ , ψ' : 2- and 4-prong)
- muon corrections (different grid, ± stat errors on corrections weights)
- CTD FLT 4PR corrections (from DIS sample, w.r.t. the FLT30) (are in STAT, but will differ for different SLOW PIONS cuts)
- p.diss fraction $(J/\psi, \psi')$
- different MC model: reweighting (*b*-slope, *W^δ*, (*M_X*?) for *J*/ψ, ψ'; elastic and p.diss)
- different *N* event estimators (Double Gaussian fit, TFF, event counting in mass window)
- SLOW PIONS quality cuts: track vertex, N_{SL}/MIN/MAX, pt, ...
- any other ideas ?

・ 同 ト ・ ヨ ト ・ ヨ ト

- new muon correction scheme (weighted corrections) implemented for BAC and combined selection F/B/RMUO or BAC
- tested on 2-prong and 4-prongs samples
- no serious DATA/MC discrepancy found
- corrected MC reproduces single MUON efficiency curves from DATA
- consistent $\psi' / J/\psi$ ratio R for 2-prongs and 4-prongs
- consistent R values for FBRMUO and for BAC based selections

- decide on final ("base line") selection (esp. pion cuts)
- for statistical error on *R* use full corelation matrix form $N_{J/\psi}$ and $N_{\psi'}$ fit
- consistent usage of BAC also for CTD FLT *track veto* corrections (low statistic DIS sample)
- treatment of empty bins on (p_t, η) grid for muon corrections
- *R* vs. |*t*| (as in DIS paper) (3 |*t*| bins ?) "machinery" analogous to *R* vs. *W*
- calculate systematic error bands
- plot theory curves on top of *R* plots

• BACKUP PLOTS...

G. Grzelak (UW)

 $\psi(2S)/J/\psi(1S)$ in PHP

▶ < ≣ > ছ < ⊃ < ⊂ 14-Apr-2020 23 / 26

イロト イロト イヨト イヨト

Muon Efficiency: F/B/RMUO after corrections

- F/B/RMUO efficiency after weighted corrections
- full FLT-SLT-TLT-REC chain for single muon (p_t , p, p_z respectively)

< 61 b

Muon Efficiency: F/B/RMUO after corrections

- F/B/RMUO efficiency after weighted corrections
- full FLT-SLT-TLT-REC chain for single muon (θ_{μ})
- some discrepancy for FMUON chambers

BAC: Analyzed Runnrs after Evtake

Analyzed_Runnrs_after_Evtake

- number of events selected after final cuts (2-prongs) vs. run number
- only runs with full BAC FLT-SLT-TLT chain implemented
- MC samples reweighted to Lumi of each data taking period