
Terascale Analysis Center: Statistical Tools Group

20. January 2010 - DESY

Constrained Least Squares Methods

with

Correlated Data and Systematic Uncertainties
Volker Blobel − Universität Hamburg

. . . constrained least squares as a natural method
and a more general alternative to χ2-function minimization

1. Alternative least squares methods for fitting/averaging

2. x-y-data with uncertainties in both coordinates

3. Uncertainties of fit parameters

4. Averaging and systematic uncertainties

5. Non-Gaussian variables

6. Cross section measurement Summary
Keys during display: enter = next page; → = next page; ← = previous page; home = first page; end = last page (index, clickable); C-← = back; C-N = goto

page; C-L = full screen (or back); C-+ = zoom in; C-− = zoom out; C-0 = fit in window; C-M = zoom to; C-F = find; C-P = print; C-Q = exit.



1. Alternative least squares methods for fitting/averaging

xm = measured variables, with covariance matrix V x

xu = unmeasured variables, “parameters”

x = (xm, xu) = measured and unmeasured variables t = independent coordinates

χ2-function minimization Constrained Least Squares

S(xu) =
∑
i

((xm)i − f(ti,xu))
2

σ2
i

= min

→ rTV −1
x r = min

Residuals r: χ2-function to be minimized is sum
of squares of residuals; problems, if residuals

• depend on > 1 measurement, and/or depend
on > 1 error contribution, especially contri-
butions changing the normalization.

S(∆xm) = ∆xT
mV

−1
x ∆xm = min

hj (xm + ∆xm, xu + ∆xu, t) = 0 j = 1, 2 . . .m

Individuals corrections ∆xm for measured
variables: expression to be minimized is sum
of squares of corrections.

• Constraints hj(x) = 0 may be implicit ex-
pressions;

• bias reduced or avoided.

Both alternatives are equivalent, with identical results, for simple problems. In both alternatives the
data may be correlated and the functions/constraints may be non-linear.

V. Blobel – University of Hamburg Constrained Least Squares Methods with Correlated Data and Systematic Uncertainties page 2



Comparison

χ2-function minimization, e.g. using Minuit

• User has to provide the function S(x), which is “seen” by Minuit. The user function
includes all data, uncertainties, the physical and statistical model.

• Minuit calculates by finite differences the first derivative of S(x), and approximates, using
the VM method, the full Hessian in ≥ n iterations for linear and non-linear problems.

• Variables are the parameters = unmeasured variables.

Constrained least squares, e.g. using Aplcon 2.0

• User describes set of variables incl. covariance matrix, and individual model functions hj(x).

• Aplcon calculates by finite differences the first derivative of all individual model func-
tions hj(x), which allows to calculate the full Hessian during each iteration (Gauss-Newton
matrix).

• Many variables: measured and unmeasured variables plus Lagrange multipliers.

• Principle used in HEP for > 50 years, mainly with kinematical constraints for particle
reactions and decays; Aplcon 1.0 in use for 33 years.
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Constrained least squares fit program Aplcon

minimize ∆xTV −1
x ∆x

subject to hj (x, t) = 0 j = 1, 2 . . .m

Properties:

• Extreme form of constrained least squares, with separation into a quadratic expression, and a
set of constraints hj(x) with all nonlinearities; solved using Lagrange multipliers;

• simple to use: derivatives calculated by numerical methods, no step definition necessary, no
principle distinction between measured (Xm) and unmeasured variables (Xu); full initial and
final covariance matrix, and pulls;

• Extension to non-Gaussian variables: selected variables can be treated e.g as Poisson- or log-
normal-distributed;

• Extension to advanced analysis of uncertainties: profile likelihood

• Aplcon is a method for difficult problems to follow accurately the assumed physical and statis-
tical model of the measurement process, and to avoid a bias in the result;

• Aplcon 1.0 and earlier test version 2.0 (Fortran) available from www.desy.de/~blobel

From publications: “In practice, the added technical complexity of a constrained fit with extra free parameters is not justified . . . ”

“The application of Lagrange multipliers is unnecessarily complicated and the linear approximation requires additional assumptions and

iterations.”
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2. x-y-data with uncertainties in both coordinates

The subject is discussed by Press et. al. (Numerical Recipes)
with the remarks:

“If experimental data are subject to measurement
error not only in the yi’s, but also in the xi’s, then
the task of fitting a straight-line model

y(x) = a+ bx

is considerably harder . . . Be aware that the liter-
ature on the seemingly straightforward subject of
this section is generally confusing and sometimes
plain wrong.”

What is the uncertainty of residual ri = yi− (a+ b xi)?
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(data in figure from C.A. Cantrell)

C.A. Cantrell [Atmos. Chem. Phys., 8, 5477-5487, 2008] lists > 30 publications for methods (including
methods giving wrong results), only for straight-line fits, almost all for uncorrelated data only.

 try “Deming regression” or “error-in-variables-model (EIV)” or “total least squares (TLS)” in
Google.

V. Blobel – University of Hamburg Constrained Least Squares Methods with Correlated Data and Systematic Uncertainties page 5



Example 1: uncertainties in both coordinates

Code:

X := . . . (variable array)
Vx := . . . (matrix array)
aplcon(2*N+2,N)

do
{

for j = 1 to N
{
h(j) = a+ b · xj − yj
}
aploop(X,VX,h,irep)

} while (irep < 0);
result in X and Vx

variable array

X =


Xm

Xu

 =



x1

y1

x2

y2
...
xN
yN
a
b


0 2 4 6 8

2

4

6

8

x

y

Note: order of measured and unmeasured variable irrelevant – distinguished by zero elements in input
covariance matrix Vx.

If measurement of slope b exists before: add variance of b to V , with no change in the program code
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Example 2: Straight line and correlated data

Now: correlation between x and y in data 6= 0, and fit of straight line required

Code:

X := . . . (variable array)
Vx := . . . (matrix array)
aplcon(2*N+2,N)

do
{

for j = 1 to N
{
h(j) = a+ b · xj − yj
}
aploop(X,VX,h,irep)

} while (irep < 0);
result in X and Vx

variable array

X =


Xm

Xu

 =



x1

y1

x2

y2
...
xN
yN
a
b


2 4 6 8 10 12

2

4

6

8

x

y

add off-diagonal elements to V x

no change of code red star is fitted xy-value

V. Blobel – University of Hamburg Constrained Least Squares Methods with Correlated Data and Systematic Uncertainties page 7



Example 3: Parabola and correlated data

Correlation between x and y in data 6= 0, and fit of parabola required

Code:

X := . . . (variable array)
Vx := . . . (matrix array)
aplcon(2*N+3,N)

do
{

for j = 1 to N
{
h(j) = a+ b · xj + c · xj2 − yj
}
aploop(X,VX,h,irep)

} while (irep < 0);
result in X and Vx

variable array

X =


Xm

Xu

 =



x1

y1

x2

y2
...
xN
yN
a
b
c


2 4 6 8 10 12

2

4

6

x

y
Only small change of code: include c in X and add + c · xj2 to h(j) red star is fitted xy-value
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3. Uncertainties of fit parameters

Aplcon provides

full covariance matrix V x for combined variables: fitted values of measured variables and of un-
measured variables (“parameters”), from the inverse of the Hessian (by the law of propagation
of uncertainties);

pulls for all measured variables: should follow N(0, 1) distributions;

• Covariance matrix is accurate in simple cases: measured data Gaussian and constraints
linear, or asymptotically in the limit of ∞ data;

• Matrix may be inaccurate (and non-Gaussian) for non-Gaussian data, constraints from
non-linear models and low statistic  statistically improved information is required on
confidence intervals for important parameters.

confidence intervals on selected parameters by profile analysis (optional):
realized by repeated fits with one additional internal constraint;

contours for selected parameters pairs by profile analysis (optional):
realized by repeated fits with two additional internal constraints.
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Confidence intervals

Confidence intervals 100(1 − α)% on a parameter of a theory should have coverage (frequentists
approach): interval includes true parameter at least 100(1−α)% of the time in repeated experiments.

Data model depends on k parameters π of interest, but also on additional nuisance parameters θ: full
likelihood function L(π,θ).

profile likelihood λ(π0) =
sup {L(π0,θ)}
sup {L(π,θ)}

=
suprenum over subspace with π = π0

suprenum over full parameter space

The profile likelihood λ is a function of π0 only, and −2 log λ converges in distribution to a χ2 random
variable with ndf = k.

Coverage of confidence intervals computed by the profile likelihood is usually surprisingly good.?

Aplcon provides two options for determination of confidence intervals:

k = 1: One-dimensional profile likelihood: fit of n−1 parameters for many fixed values of a single
parameter (like Minos in Minuit)

k = 2: Two-dimensional profile likelihood: fit of n − 2 parameters for many fixed points in the
2-parameter plane (like Mncontours in Minuit)

? Wolfgang A. Rolke et al., Limits and confidence intervals in the presence of nuisance parameters, NIM A 551 (2005) 493 – 503
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Example 4: Triangle parameters

Assume that three sides a, b and c of a triangle and one angle γ are measured. Three values are
sufficient for a complete definition of a triangle. Thus the least squares method can be used to improve
the measured values, . . . and to determine the triangle area A.

Code:

X := . . . (variable array)
Vx := . . . (matrix array)
aplcon(5,2) aprofl(5,0) aprofl(5,2)

do
{

p = (a+ b+ c)/2 ! half the circumference
S =

√
p(p− a)(p− b)(p− c) ! area of triangle

h(1) = tan(γ/2)− S/(p(p− c)) ! angle constraint
h(2) = A− S ! area constraint
aploop(X,VX,h,irep)

} while (irep < 0);

variable measured fit result pull
a 10 ±0.05 10.01 ±0.05 1.75
b 7 ±0.2 7.06 ±0.20 1.75
c 9 ±0.2 8.72 ±0.12 −1.75
γ 1 ±0.02 1.019 ±0.017 1.75
A 30.10 ±0.87

X =


Xm

Xu

 =


a
b
c
γ
A



aγ

b c

�
�
�
�
�
�

@
@

@
@

@
@

 e.g. unitarity triangle, represent-

ing interactions between quarks
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. . . more results from triangle fit

The parameter of interest is assumed to be the triangle area A. This parameter has no influence on
the fit, but it is determined incl. the propagation of uncertainties because there is a constraint for A.

Matrix of correlation coefficients

i 1 2 3 4 5

1 100

2 -2 100

3 20 23 100

4 -10 -11 90 100

5 11 93 57 23 100

i 1 2 3 4 5

(coefficients in %)

Confidence intervals profile analysis for parameter 5: area

Prob sigmas _____________________________________ sigma units

0 29.233 30.099 30.966

1 68.3 % 1.00 29.217 ... 30.979 -1.02 1.01

2 90.0 % 1.65 28.646 ... 31.544 -1.68 1.67

3 95.0 % 1.96 28.366 ... 31.819 -2.00 1.99

4 99.0 % 2.58 27.820 ... 32.357 -2.63 2.61

5 99.5 % 2.81 27.614 ... 32.559 -2.87 2.84

6 99.9 % 3.29 27.183 ... 32.979 -3.37 3.32

Contour A− b from a 2-dim profile analysis: Confidence interval from a 1-dim profile analysis:
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4. Averaging and systematic uncertainties

xave =
∑
i

wi xi with
∑
i

wi = 1 ( xave unbiased, if xi unbiased)

Definition of optimal weights wi with minimal variance σ2
ave from least squares requirement:

Uncorrelated data xi ± σi:

wi =

(∑
i

1

σ2
i

)−1

· 1

σ2
i

σ2
ave =

(∑
i

1

σ2
i

)−1

Correlated data xi with covariance matrix V x: needs inverse V −1
x

wi =

(∑
j,k

(
V −1

x

)
jk

)−1

·
∑
j

(
V −1

x

)
ij

σ2
ave =

∑
ij

wiwj (V x)ij

Common additive uncertainty : xi ± σi ±∆ (identical systematic error ∆)

• (PDG:) first average xi ± σi, then combine error with ∆2, or

• (PDG:) apply factor (1 + ∆2 (
∑

i 1/σ
2
i ))

1/2
to all errors, and treat as uncorrelated,or

• define covariance matrix with (V x)ii = σ2
i + ∆2 (V x)ij = ∆2 i 6= j

all three methods are equivalent.

Common multiplicative uncertainty: e.g. (xi ± σi) (1±∆)  more complicated, discussed later
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Average of two correlated data

Covariance matrix V x and its inverse V −1
x (weight matrix) depend on σ1, σ2 and ρ:

V x =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
V −1

x =
1

1− ρ2

(
1/σ2

1 −ρ/(σ1σ2)
−ρ/(σ1σ2) 1/σ2

2

)
Average is xave = w1x1 + w2x2, with

w1 =
σ2

2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

w2 =
σ2

1 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

σ2
ave =

(
1− ρ2

) σ2
1σ

2
2

σ2
1 + σ2

2 − 2ρσ1σ2

(dashed red curve =⇒)

• Weight w2 < 0 for large correlation ρ > +σ1

σ2

 not meaningful

• xave ≡ x1 and σave ≡ σ1, no improvement for ρ = σ1

σ2
,

• expected difference2 E [(x1 − x2)2] = σ2
1 + σ2

2 − 2ρσ1σ2

• smaller value of σave for negative correlation.

Case σ2 = 2× σ1:

-1 0 1
-1

0

1

2

rho

sigma2 = 2 * sigma1

sigma(average)

w1

w2

σave/σ1 and weights vs ρ
Averaging of two values, assumed to be uncorrelated (ρ = 0): expected χ2-value = 1.0, at ndf = 1.
A small χ2-value (< 1) can be caused by

• overestimated errors: (  reduce σave?), or it can indicate an

• unknown positive correlation between the two values:  increase σave– no gain in accuracy!
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Example 5: Averaging correlated data

50 years old data on the isospin 1/2 and 3/2 scattering lengths in πp-scattering in the s-state:

Experiment (1): a1 = 0.170± 0.0240; a3 = −0.107± 0.0197; corr. coefficient ρ = −39.1%.
Experiment (2): a′3 = −0.104± 0.006.

Input to the Aplcon fit to average the two a3-values and, at the same time, improve the correlated
a1:

xm =

 a1

a3

a′3

 =

 0.170± 0.0240
−0.107± 0.0197
−0.104± 0.0060

 V x =

 0.580 −0.185 0
−0.185 0.388 0

0 0 0.036

× 10−3

and after the code h1 = a3 − a′3 the result by Aplcon is

x =

 a1

a3

a′3

 =

 0.169± 0.0220
−0.1043± 0.0057
−0.1043± 0.0057

 V x =

 0.499 −0.0157 −0.0157
−0.0157 0.0329 0.0329
−0.0157 0.0329 0.0329

× 10−3 .

Plot of the two scattering length a1 and a3:

• The yellow ellipse is 1-σ contour of experiment (1).

• The star is the average with ellipse indicating the 1-σ contour
of the average.

Note: χ2/ndf = 0.02123 means p-value of 88.4 %.
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Systematics - either additional variables . . . . . . or contribution to V x

Data with common additive systematic uncertainty

. . . as correlated data . . .

x1 = x′1 + a

x2 = x′2 + a

x′1 ± σ1

x′2 ± σ2

a = 0 ± ∆
V

x′1x′2
a

 =

 σ2
1 0 0

0 σ2
2 0

0 0 ∆2


Equivalent: non-diagonal covariance matrix by law of (linear) propagation of uncertainties:

V

(
x1

x2

)
=

(
1 0 1
0 1 1

)
V

x′1x′2
a

 1 0
0 1
1 1

 =

(
σ2

1 + ∆2 ∆2

∆2 σ2
2 + ∆2

)

Data with common multiplicative systematic uncertainty

. . . as correlated data . . .

x1 = x′1 × a
x2 = x′2 × a

x′1 ± σ1

x′2 ± σ2

a = 1 ± ∆
V

 x′1
x′2
a

 =

 σ2
1 0 0

0 σ2
2 0

0 0 ∆2


Non-diagonal covariance matrix by law of propagation of uncertainties: non-linear transformation

V

(
x1

x2

)
=

(
a 0 x1

0 a x2

)
V

x′1x′2
a

 a 0
0 a
x1 x2

 =

(
σ2

1 + x2
1∆2 x1x2∆2

x1x2∆2 σ2
2 + x2

2∆2

)
with a = 1

Elements of the transformation matrix are not constant; the two representations are not equivalent.
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Averaging with normalization uncertainty “χ2-function” minimization

In a publication (NIM A) the following measurement for two data points x1, x2 and a common nor-
malization factor α with uncertainty ε is given:

x1 = 8.0± 2% x2 = 8.5± 2% α = 1± ε with ε = 0.1

“Assuming that the two measurements refer to the same physical quantity, the best estimate of its
true value can be obtained by fitting the points to a constant” (from the publication).

A simple straightforward average would be xave = (x1 + x2)/2 = 8.25, but . . .

Publication: average xave by “χ2-function minimization”, the covariance matrix V is defined to
include the normalization uncertainty:

χ2 = ∆TV −1∆ = minimum with V =

(
σ2

1 0
0 σ2

2

)
+ ε2 ·

(
x2

1 x1x2

x1x2 x2
2

)
(∆ is “the vector of the differences” between xi and average xave).

Resulting average is xave = 7.87± 0.81 , outside (!) the range of the two input values

. . . apparently wrong  large bias with constructed non-diagonal covariance matrix. ⇒more

Note: weights w1 = +1.25 and w2 = −0.25 because σ1 < σ2;
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Example 6: Normalization uncertainty

With two constraints the average xave is forced to agree with the two measurements, multiplied by the
normalization factor α:

Code:

X := . . . (variable array)
Vx := . . . (matrix array)
aplcon(4,2)

do
{

h(1) = α · x1 − xave

h(2) = α · x2 − xave

aploop(X,VX,h,irep)

} while (irep < 0);

variable array

X =


Xm

Xu

 =


x1

x2

α
xave



variable measured fit result pull
x1 8.0 ±2% 8.235 ±0.116 2.14
x2 8.5 ±2% 8.235 ±0.116 −2.14
α 1 ±10% 1.000 ±0.100 −2.14
xave 8.235 ±0.832

 no problem with normalization uncertainty with constrained least squares.
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5. Non-Gaussian variables

Least squares requires data with constant variance, independent of fit result.
What happens, if xi are not normal distributed or do not have constant variance?  Bias

Example: Average of data following (or proportional to) Poisson distribution

x1 = 9± 3
x2 = 16± 4

Weighted mean (LS) xave = 11.52 ± 2.40
Using Poisson statistic (ML) xave = 12.5 ± 2.5

Aplcon can treat Poisson distributed measured variables using ML formalism, avoiding the bias, by
apoiss(index).

Data in HEP are often given with uncertainty in %, i.e relative uncertainty.

This indicates the log-normal (instead of the normal) distribution with constant relative uncertainty.

Normalization factors will approximately follow the log-normal distribution, as a consequence of the
Central Limit-Theorem: product of many factors with small uncertainty.

Aplcon can treat log-normal distributed measured variables by a transformation, avoiding a potential
bias.
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Transformations of variables in Aplcon

Log-normal distribution for e.g normalization factors: aplogn(index)

log-normal variable (with uncertainty ∝ value): external α ⇒ exp [ α′ ]

with new internal variable α′ ≡ lnα

Example: α = 1± 0.2

0 2 4 6
1E-6

1E-5

1E-4

0.001

0.01

0.1

1

x

log-normal x

0 2 4 6
1E-6

1E-5

1E-4

0.001

0.01

0.1

1

normal x

density of 1/x

Similar: square-root-transformation for variable with uncertainty ∝
√

value by apsqrt(index).
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6. Cross section measurement

Least squares popular in particle physics for cross section fits and averaging, using data from ≥ 1
experiment.

Cross sections xi are measured via counted numbers ni = S · xi of events:

cross section xi = S−1 · ni, i = 1, . . .

where the sensitivity factor S is a product

S = A1 · A2 · · ·Aa ·
∫
L dt ·∆x

of many factors (trigger, detection, reconstruction . . . probabilities, luminosity, bin width).

number ni: follows Poisson distribution,

sensitivity S: will follow a log-normal distribution (log of S normal distributed) – the inverse S−1

will follow a log-normal distribution too:

cross section xi = S−1 (log-normal)× ni (Poisson) – possible with Aplcon

cross section: in practice assumed to follow the normal distribution with xi assumed to be inde-
pendent (with diagonal covariance matrix); even resolution-corrected (“unfolded”) cross sections
usually assumed to be independent (!); in addition there is a common normalization factor α = 1
with uncertainty ε.
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Residual vs Constraint – in case of systematic uncertainties

Cross section data xi rely on e.g. energy measurement by calorimeter with uncertainty in calibration.
Method: repeat determination of xi with calibration constant changed by ±1 standard deviation, to
obtain x

(−)
i and x

(+)
i , and estimate systematic uncertainty vi.

Additive systematic uncertainty vi =
x

(+)
i − x(−)

i

2
i = 1, . . .

Residual ri = α ( xi +
∑

k βk vik ) − fi

expectationmeasured

correction

factor
0± 1

normalization
1± ε

Constraint:

α ( xi +
∑
k

βk vik ) − fi = 0

Residuals ri are influenced by uncertainties in ≥ 3 measured quantities: xi, α and βk  standard
deviation of residual unclear . . . χ2-function minimization impossible or difficult, with potential
bias. (in practice complicated expressions for variance in denominator to avoid or reduce bias in
result).

Constraints: individual corrections fitted for each variable: xi, α, βk . . . with individual variance.
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Cross section averaging – example with “χ2-function” minimization

. . . from: Measurement of the Inclusive ep Scattering Cross Section at Low Q2 and x at HERA, H1
Collaboration, DESY 08-171 and arXiv :0904.0929.

The averaging and the phenomenological analysis of the data is done using the χ2 definition eq. (31)

χ2
exp (m, b) =

∑
i

[
mi −

∑
j γ

i
jm

ibj − µi
]2

δ2
i,statµ

i
(
mi −

∑
j γ

i
jm

ibj

)
+ (δi,uncormi)2

+
∑
j

bj
2 .

”. . . Correlated and uncorrelated systematic errors are to a good approximation proportional to the
central values (multiplicative errors), whereas the statistical errors scale with the square root of the
expected number of events.” The χ2 definition should avoid ”a small bias to lower cross sections since
the measurements with lower central values have smaller absolute uncertainties.”

Measured value is µi with statistical and uncorrelated systematic uncertainties ∆i,stat and ∆i,uncor.
Relative correlated systematic, statistical and uncorreleated uncertainties are γij = Γ i

j/µ
i, δi,stat =

∆i,stat/µ
i and δi,uncor = ∆i,uncor/µ

i. The underlying physical quantities are mi (vector m).

There are correlated systematic error sources of type j, with a central value αj and uncertainty
∆αj

, where ∂µi/∂αj quantifies the sensitivity of the measurement µi to the systematic source j.
Summation over j extends over all correlated systematic sources. The variables bj = (aj − αj)/∆αj

and Γ i
j = (∂µi/∂αj)∆αj

are introduced.

Data sets are consistent: χ2/ndf = 19.5/39 and 86.2/125, corresponding to p-values of 99.62 % and
99.68 %.
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Summary

Constrained least squares fit as alternative to “χ2-function”?

Properties of constrained least squares fit program Aplcon:

• Aplcon avoids potential bias of fit result in complicated cases of “residuals” from > 1 measured
quantities, and of systematic uncertainties, and background;

• allows to perform a constrained simultaneous fit, taking into account the non-Gaussian character
of certain variables, and providing confidence intervals by profile analysis;

• equivalent to “χ2-function” minimization in those cases, where “χ2-function” minimization can
be applied;

• Hessian matrix equivalent to Gauss-Newton matrix, no variable-metric iteration necessary – fewer
iterations than MINUIT; . . . but requires larger memory space and, due to numerical derivatives
of many variables, slower than Minuit in “equivalent” cases;

• clear and general method to follow assumed model of measurement process, simple to use.
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Solution of problem with constraints

Method of Lagrange multipliers, introducing λj, j = 1, 2 . . .m:

Linearization of hj(xm,xu) = 0 j = 1, 2 . . .m : Am∆xm +Au∆xu− c = 0 (A)ji =
∂hj(x)

∂(x)i

Lagrange function L(∆xm,∆xu,λ) = ∆xT
mV

−1
x ∆xm + 2λT (Am∆xm +Au∆xu − c)

Matrix equation to be solved for new corrections ∆xm, ∆xu, and λ: V −1
m 0 AT

m

0 0 AT
u

Am Au 0

 ∆xm
∆xu
λ

 =

 0
0
c



Matrix inversion: first part skipped (V −1
m ), remaining part inverted, making use of symmetry of matrix: V −1

m 0 AT
m

0 0 AT
u

Am Au 0

 =⇒

 −V m 0 V mA
T
m

0 0 AT
u

AmV m Au −AmV mA
T
m

 =⇒ inverse = covar. matrix
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Bias in averaging “χ2-function” minimization

Determine average xave of data xj, which have common normalization factor α with uncertainty ε.
Best estimate for xave is x =

∑
j xj/n with normalization factor α unchanged (no information on α

from averaging).

s2 =
1

n

∑
j

(xj − x)2 =
1

n

∑
j

x2
j − (x)2  

1

n

∑
j

x2
j ≈ (x)2 + σ2

χ2-function F (xave, α) =
∑
j

(
α · xj − xave

σ

)2

+

(
α− 1

ε

)2

The minimum of F (xave, α) is determined from the two derivative conditions:

1

2

∂F

∂α
=
∑
j

(
αxj − xave

σ2

)
xj +

(
α− 1

ε2

)
= 0

1

2

∂F

∂xave

= −
∑
j

(
αxj − xave

σ2

)
= 0

The second equation gives the estimate xave = α · x. The estimate α̂ for the normalization factor is
obtained from the first equation; the result is biased:

α̂ =
1

1 + nε2
xave =

1

1 + nε2
x .

The two χ2-functions below give unbiased results (but incorrect parameter uncertainties from the
Hessian):

F (xave, α) =
∑
j

(
α · xj − xave

α · σ

)2

+

(
α− 1

ε

)2

F (xave, α) =
∑
j

(
xj − α · xave

σ

)2

+

(
α− 1

ε

)2

.
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Covariance matrix plot χ2-function” minimization

Axis of covariance ellipse is slightly tilted (left) because input values x1 and x2 (and σ1, σ2) are not
equal; this causes the “strange” value of the average.

χ2 = ∆TV −1∆ = minimum with V =

(
σ2

1 0
0 σ2

2

)
+ ε2 ·

(
x2

1 x1x2

x1x2 x2
2

)
(∆ is ‘the vector of the differences” between xi and average xave).

6 8 10
6

8

10

6 8 10
6

8

10

Axis of covariance ellipse is not tilted for σ1 = σ2 (right).
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Example 7: fit of a histogram

Fitting of a curve to histogram data – not the natural application for constrained fitting . . .
but it is possible:

-4 -2 0 2 4
0

20

40

60

Fit result
n̂ 800.8 ± 29.6
µ̂ 0.993 ± 0.018
σ̂ 0.480 ± 0.015

b̂ 0.95 ± 0.17

0 20 40 60
0

20

40

60

+1

-1

0

Plot of correlation coefficients of fitted
bin contents

Poisson distribution assumed for bin con-
tents (a few bin contents are zero).
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