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1 Introduction

Anomalies are by definition symmetries of of a classical field theory which get
broken by quantum effects. The existence of anomalies is crucial and at the
same time ubiquitous in quantum field theory. There are lots of anomalies, for
any kind of symmetries and in any number of dimension: global symmetries,
gauge ones, both discrete and continuous, spacetime symmetries, internal ones,
bosonic symmetries and supersymmetries.
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1.1 Different types of symmetries in Field Theory

Let us now review different types of symmetries in field theory, and their prop-
erties:

1. Global symmetry. This is a physical symmetry of a system. One can
apply the first Noether theorem to get classically conserved global currents
and charges. This symmetry can be spontaneously broken, and as many
goldstone bosons are produced as the number of generators of the broken
group1. We will see that these symmetries can be anomalous.

2. Gauge symmetry. Unphysical symmetry of a system. It is a redundancy of
the physical description, crucial to reduce the overdetermination of of-shell
degrees of freedom to the on-shell ones. One can apply the second Noether
theorem and get Ward identities for large gauge transformations. This
symmetry cannot be spontaneously broken (Elitzur theorem), or otherwise
the gauge theory is inconsistent. We will see that these symmetries can
not be anomalous, or otherwise the gauge theory is inconsistent. It is
useful to split the gauge transformations in two subsets:

• Small gauge transformations. They are all gauge transformations
such that they vanish at every point of the boundary of spacetime.
They are the usual gauge transformation we typically learn in under-
grad.

• Large gauge transformations. They are all gauge transformations
such that they have boundary of spacetime (i.e spacetime infinity).
They are the gauge transformations sending one instanton solution
to another.

3. Global part of the gauge symmetry. This is a physical symmetry of a sys-
tem. It is what remains after doing gauge-fixing. One can apply the first
Noether theorem and get classically conserved global current and charges,
as for example the electric charge in a U(1) gauge theory. This symme-
try can be spontaneously broken, wannabe goldstone bosons are produced
but immediately eaten up by W -bosons via the Higgs mechanism. We will
see that these symmetries can not be anomalous, or otherwise the gauge
theory is inconsistent.

1.2 Noether’s first theorem

Here we will review a quick way to derive the first Noether’s theorem in field
theory. Consider for simplicity the case of a scalar field φ, and a symmetry

φ→ φ′ = φ+ δφ (1)

1This holds true only if the spacetime dimension is greater than 2, and if we are discussing
about an internal symmetry and not a spacetime one. For spacetime symmetries, typically
less Goldstone bosons are produced. The most beautiful example of this I know is Inflation:
the inflaton is the unique Goldston boson produced from spontaneously breaking the isometry
group of de Sitter. Such group gets broken down to the isometry group of the quasi-de Sitten
inflationary background. In particular, the inflaton is the Goldstone boson of the broken time
translation, but also the special conformal isometry are broken, and they give no goldstones.
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with
δφ = εX(φ) (2)

where ε is a constant infinitesiamlly small parameter. By definition, this trans-
formation is a classical symmetry if the Lagrangian is invariant under it

L→ L′ + δL, δL = 0. (3)

Promote ε to a generic continuous function ε(x) of the spacetime coordinates
xµ such that it vanishes fast at infinity. Now let’s compute the variation of the
Lagrangian density

δL =
δL

δ(∂µφ)
δ (∂µφ) +

∂L
δφ
δφ =

=
δL

δ(∂µφ)
∂µ (δφ) +

∂L
δφ
δφ =

=
δL

δ(∂µφ)
∂µ (εX(φ)) +

∂L
δφ
εX(φ) =

=
δL

δ(∂µφ)
∂µεX + ε

[
δL

δ(∂µφ)
∂µX +

∂L
δφ
X(φ)

]
(4)

Now, we know that if we take ε constant, then the lagrangian should be invariant.
The first term vanishes for ε constant, so one should impose that the second
does as well in this limit.

δL
δ(∂µφ)

∂µX +
∂L
δφ
X(φ) = 0 (5)

Therefore, for non-constant ε(x), we are actually left with

δL = (∂µε)J
µ, Jµ =

δL
δ(∂µφ)

X(φ) (6)

and the action then changes as

δS =

∫
d4x δL =

∫
d4x (∂µε)J

µ = −
∫
d4x ε∂µJ. (7)

Now, this equation holds for any field configuration φ, but when φ is satisfying
the equation of motion, then δS = 0 for any variation δφ. This means that
when φ is satifying the equation of motion,

∂µJ
µ = 0. (8)

1.3 Ward Identities in QFT

The discussion above, on the first Noether theorem, regards symmetries of the
classical field theory. We would like to derive now a morally analog result, in
QFT. Such a thing exist, and it is called Ward Identities.

Let us consider for simplicity a theory of a single scalar field φ(x), and the
path integral with the introduction of a classical source K(x) for φ(x).

Z[K] =

∫
Dφ exp

(
−S[φ] +

∫
d4x Kφ

)
(9)
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Again we consider the symmetry

φ→ φ′ = φ+ ε(x)X(φ) (10)

1. This is just a change of variable at the level of the path integral

Z[K]→ Z ′[K] =

∫
Dφ′ exp

(
−S[φ′] +

∫
d4x Kφ′

)
=

= Z[K]

(11)

so the partition function is actually invariant, as the integration variable
is a dummy one.

2. We can nevertheless use the symmetry to do the following manipulation

Z ′[K] =

∫
Dφ′ exp

(
−S[φ′] +

∫
d4x Kφ′

)
=

=

∫
Dφ′ exp

(
−S[φ+ εX] +

∫
d4x Kφ+KεX

)
=

=

∫
Dφ′ exp

(
−S[φ] +

∫
d4xε∂µJ

µ +

∫
d4x Kφ+KεX

)
=

=

∫
Dφ′ exp

(
−S[φ] +

∫
d4x Kφ

)
exp

(∫
d4x (ε∂µJ

µ +KεX)

)
=

(12)
Now, we will Taylor expand the second exponential, and keep only the
leading term in ε:

Z[K]′ =

∫
Dφ′ exp

(
−S[φ] +

∫
d4x Kφ

)(
1 +

∫
d4x (ε∂µJ

µ +KεX)

)
=

=

∫
Dφ′ exp

(
−S[φ] +

∫
d4x Kφ

)
+

+

∫
Dφ′ exp

(
−S[φ] +

∫
d4x Kφ

)∫
d4x (ε∂µJ

µ +KεX)

(13)

3. Now, to proceed, we need to make a crucial assumption. This assumption
is that the measure of integration is invariant:

Dφ′ = Dφ (14)

4. By assuming that the integration measure is invariant, we get to

Z[K]′ = Z[K] +

∫
Dφ exp

(
−S[φ] +

∫
d4x Kφ

)∫
d4x (ε∂µJ

µ +KεX)

(15)

Now, we use the fact that Z[K]′ = Z[K] to get:

Z[K] = Z[K] +

∫
Dφ exp

(
−S[φ] +

∫
d4x Kφ

)∫
d4x (ε∂µJ

µ +KεX)

(16)
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Therefore we must have∫
Dφ exp

(
−S[φ] +

∫
d4x Kφ

)∫
d4x ε(x) (∂µJ

µ +KX) = 0 (17)

Furthermore, this has to hold true for any function ε(x). Then this implies∫
Dφ exp

(
−S[φ] +

∫
d4x Kφ

)
(∂µJ

µ +KX) = 0 (18)

5. From this equality we can generate an infinite set of identities on the
correlation functions, known as Ward identities. For example, sekking
K = 0 we get ∫

Dφ′ exp (−S[φ]) ∂µJ
µ = 0 (19)

which is simply
〈∂µJµ〉 = 0 (20)

By taking n derivaties with respect of K and then setting K = 0 we get
to

〈φφ · · ·φ∂µJµ〉 = 0 (21)

We conclude that ∂µJ
µ when this is sticked inside a correlation function.

When this happens, we say that ∂µJ
µ = 0 in an operatorial way.

2 Chiral anomaly

Consider a 4 theory of a Dirac fermion ψ in a background (non dynamical) U(1)
gauge field

S =

∫
d4x iψ̄ /Dψ (22)

This action has two classical global U(1) symmetries

1. Vector rotation. U(1)V . Action in the field is ψ → ψ′ = eiαψ

2. Axial rotation. U(1)A Action in the field is ψ → ψ′ = eiαγ5ψ

For each of these symmetries we can derive the conserved currents by using the
first Noether theorem.

1. Vector rotation. jµV = ψ̄γµψ

2. Axial rotation. jµA = ψ̄γµγ5ψ

However, we want to ask now if these currents are also conserved in the
quantum theory. Therefore, we need to derive the Ward identities as before. The
only non-trivial step is looking wether the measure of integration is invariant or
not. To do so, it is first of all useful to write the integration measure in a nicer
way.

5



2.1 The integration measure

Consider the Dirac operator i /D acting on a fermion in a background electric
field. We will consider the eigenspinors of this operator

i /Dφn = λnφn (23)

where the entries of the eigenspinors φn are complex numbers.
We will expand any spinor in the base of the eigenspinors of i /D.

ψ(x) =
∑
n

anφn(x), ψ̄(x) =
∑
n

b̄nφ̄n(x) (24)

where now an and b̄n are Grassmann numbers. We recall that different eigen-
spinors are orthogonal ∫

d4xφnφ̄m = δmn (25)

We now want to write the Path integral in terms of the eigenfunction ex-
pansion. The integration measure in this context reads∫

DψDψ̄ =
∏
n

∫
db̄ndan (26)

while the action reads

S =

∫
d4x iψ̄ /Dψ =

∫
d4x i(

∑
n

b̄nφ̄n) /D(
∑
n

anφn) =

=

∫
d4x i

∑
n,m

b̄nanλmφ̄nφn =
∑
n

λnanb̄n

(27)

Putting these two together we can write the path integral∫
DψDψ̄ e−S =

∏
n

∫
db̄ndane

−
∑
n λnanb̄n =

=
∏
n

∫
db̄ndan

(
1−

∑
n

λnanb̄n

)
=

=
∏
n

λn

(28)

where we have used the fact that squares of Grassmann variables vanish, and
the usual integration rules over Grassmann variables. We learn then that the
Path Integral is the product of all the eigenvalue of the dirac operator. We will
define such quantity as the determinant of the Dirac operator.

det i /D :=
∏
n

λn (29)

Rewriting the measure in this way is very useful to see how it behaves under
the chiral symmetry.
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2.2 Transformation of the measure

Recall that infinitesimally the chiral rotation is

δψ = iε(x)γ5ψ (30)

By substituting the expansion of psi in the base of the eigenspinors we get∑
n

δanφn = iε(x)
∑
m

amγ
5φm (31)

Now we can explicitate δan by using the ortogonality relation.

δan =

(
i

∫
d4xε(x)φ̄nγ

5φm

)
am := Xn,mam (32)

We would like to compute the Jacobian of the transformation a′n = an+Xn,mam.
This is a linear transformation, so the Jacobian will be independent on the value
of an. If an was a c-number, then the Jacobian would be

J = det (1 +X) (33)

however, we are now considering a linear transformation of grassmann variables.
Then the Jacobian is the inverse of the determinant.

J = det−1 (1 +X) (34)

At leading order in ε we can expand this and get

J = det−1 (1 +X) ≈ det(1−X) ≈ det e−X ≈ e− trX (35)

where the trace means a trace over the spinor indices, and an integration over
spacetime. We can finally write the form of the Jacobian in detail

J = exp

(
−i
∫
d4x ε(x)

∑
n

φ̄n(x)γ5φn(x)

)
(36)

2.3 Evaluating the Jacobian

We need to evaluate the following jacobian of equation (36). We will do this in
steps.

1. First of all, regularize the expression.∫
d4x ε(x)

∑
n

φ̄nγ
5φn = lim

Λ→∞

∫
d4x ε(x)

∑
n

φ̄nγ
5e−λ

2
n/Λ

2

φn =

= lim
Λ→∞

∫
d4 xε(x)

∑
n

φ̄nγ
5φne

−(i /D)2/Λ2

φn

(37)

2. Make a change of base. In order to get a feeling of it, recall first a change
of base we typically do in QM.∑

n

φ†n(x)Oφn(x) =
∑
n

〈φn|x〉〈x|Oφn〉 =
∑
n

〈x|Oφn〉〈φn|x〉 =

=
∑
n

〈x|O|x〉 =

∫
dk

2π
〈x|O|k〉〈k|x〉 =

=

∫
dk

2π
〈k|x〉〈x|O|k〉 =

∫
dk

2π
e−ikxOeikx

(38)
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We want to do an analog change of variable.∑
n

φ̄n(x)γ5e /D
2/Λ2

φn(x) =

∫
d4k

(2π)4
tr
(
γ5e−ik·xe /D

2/Λ2

eik·x
)

(39)

where now the trace is only over spinor indices.

3. Regularize this inner integral.∫
d4x ε(x)

∑
n

φ̄n(x)γ5e /D
2/Λ2

φn(x) =

= lim
Λ→∞

∫
d4x ε(x)

∫ Λ d4k

(2π)4
tr
(
γ5e−ik·xe /D

2/Λ2

eik·x
)

=

=

∫
d4x ε(x) lim

Λ→∞

∫ Λ d4k

(2π)4
tr
(
γ5e−ik·xe /D

2/Λ2

eik·x
)

(40)

In the next steps, we will focus on the most interior integral now:

lim
Λ→∞

∫ Λ d4k

(2π)4
tr
(
γ5e−ik·xe /D

2/Λ2

eik·x
)

(41)

this still seems a bit hard to evaluate, so we will make use of some identi-
ties.

4. Now, we use to identities for the covariant derivative.

(a)

/D
2

= γµγνDµDν =
1

2
{γµ, γν}DµDν +

1

2
[γµ, γν ]DµDν =

= D2 +
1

4
[γµ, γν ] [Dµ, Dν ] =

= D2 − ie

2
γµγνFµν

(42)

(b)
e−ik·xDµe

ik·x = Dµ + ikµ (43)

5. Combining the two identities above, we can rewrite

e−ik·xe /D
2/Λ2

eik·x = e−ik·xeD
2/Λ2− ie2 γ

µγνFµν/Λ
2

eik·x

= e(Dµ+ikµ)2/Λ2− ie2 γ
µγνFµν/Λ

2

=

= e(Dµ+ikµ)2/Λ2

e−
ie
2 γ

µγνFµν/Λ
2

e... . . .

(44)

where in the last step we used the Becker-Campbell-Hausdorff formula.
We are here neglecting the other terms, as they will be irrelevant for the
computation, as we will shortly see.

6. Now, the next step is expanding in Taylor series the exponents. The term
we are mostly interested is

e−
ie
2 γ

µγνFµν/Λ
2

= 1− ie

2
γµγνFµν

1

Λ2
− e2

8
γµγνγργσFµνFρσ

1

Λ4
+ o

(
1

Λ6

)
(45)
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The other one expands as

e(Dµ+ikµ)2/Λ2

= 1 +
(Dµ + ikµ)2

Λ2
+

(Dµ + ikµ)4

2Λ4
+ o

(
1

Λ6

)
(46)

7. Now we will take the product, keeping only terms up to o

(
1

Λ6

)
. We get

γ5e(Dµ+ikµ)2/Λ2

e−
ie
2 γ

µγνFµν = γ5

[
1− ie

2
γµγνFµν

1

Λ2
− e2

8
γµγνγργσFµνFρσ

1

Λ4
+

+
(Dµ + ikµ)2

Λ2
− (Dµ + ikµ)2

Λ4

ie

2
γµγνFµν +

(Dµ + ikµ)4

2Λ4
+ o

(
1

Λ6

)]
(47)

8. Now, we need to take the trace over the spinor indices. For this, we will
use the following identities among the gamma matrices

(a) tr γ5 = 0

(b) tr γ5γµγν = 0

(c) tr γ5γµγνγργσ = 4εµνρσ

therefore in the above expression, only the last term in the first line sur-
vives. We then get to

∑
n

φ̄nγ
5e /D

2/Λ2

φn = lim
Λ→∞

∫ Λ d4k

(2π)4
tr
(
γ5e−ik·xe /D

2/Λ2

eik·x
)

=

= lim
Λ→∞

∫ Λ d4k

(2π)4

(
e2

2
εµνρσFµνFρσ

1

Λ4
+ o

(
1

Λ6

))
=

=
e2

32π2
εµνρσFµνFρσ

(48)
where the integration measure gave a Λ4 term, compensing the one in the
integrand. Very crucially, in the limit all the other terms that we didn’t
write come with higher inverse powers of Λ, so they don’t contribute.
Finally noticed I have cheated a bit, as a factor of π2 disappears in thin
air. I still don’t know where it got lost. But the final answer should be
the one given above.

2.4 Anomalous Ward Identity

We have leant how the measure of integration changes:∫
DψDψ̄ →

∫
DψDψ̄ exp

(
− ie2

16π2

∫
d4xε(x)εµνρσFµνFρσ

)
. (49)

It is now easy to re-do the derivation of the Ward identity that we did above,
but now instead of assuming the measure is invariant, we write specifically the
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way it transforms. After some easy steps essentially identical to those of the
previous section one gets the anomalous Ward identity:

∂µj
µ
A =

e2

16π2
εµνρσFµνFρσ. (50)

Again, this is meant to be an operatorial equation, meaning it holds true when
inside a correlation function.

2.5 A puzzling η − η′ story

One big puzzle back in the days was that the η′ meson has the same quark
composition as the η meson, but its mass is double.

This thing made no sense. Why should the mass be double, if it is a bound
state of the same constituents? The solution is coming from the ABJ chiral
anomaly. Let us schematically see this.

1. Consider first a limit in which up, down and strange are massless, and
charm, bottom and top are massive. There is a U(3) global symmetry
rotating the massless quarks. At energies below chiral symmetry breaking,
if we wrongly assume that the U(3) was non-anomalous, then we get that
this is spontaneously broken. We then expect 9 goldstone massless bosons.
Those are the mesons. They are 3 pions, two ηs, and four Kaons.

2. In the real world, u, d and s are not massless. But they are still much
less massive than c, b, t. Therefore the chiral symmetry U(3) is broken
since the beginning, but broken very mildly. Therefore at energies smaller
then chiral symmetry beraking, there are massive pseudo-goldstone bosons
produced. Again, they are the real world mesons. And we expect them to
be of the same mass. But we see the η′ meson to be much more massive.

3. Actually U(3) ' SU(3) × U(1)A (disregarding a global Z3 factor). And
we know now that U(1)A is anomalous. Therefore badly broken in the
quantum theory, not just mildly. Therefore, in the quantum theory only
SU(3) is an approximate symmetry, producing goldstone bosons of ap-
proximeately the same mass. They are the 8 mesons, excluding the η′.
The η′ would be the pseudogoldstone boson associated to U(1)A and the
fact this is anomalous explains its bigger mass.

4. One can go further (and in fact Witten did) and use the anomaly to
experimentally predict the mass of the η′. Essentially we saw that the
non-conservation of the chiral current receives contribution from instanton
configurations. Witten evaluated this contribution (altough in a large-N
expansion) and explained the physical origin of the anomalous mass of the
η′ meson.

2.6 A decadent pion story

The neutral pion π0 is the lightst of the meson. It decays as

π0 → γ + γ (51)
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the vast majority of times (above 99% branching ration). The second preferred
channel is the Dalitz decay. However, this experimental fact was a huge puzzle
back in the days. Indeed, this decay of the pion into two photons is extremely
suppressed if the chiral symmetry is quantum exact.

1. If we assume masseless u and d limit, then the decay of the neutral pion
in teo gammas is actually forbidden, as the only decay process mediating
them is by coupling the pion to the chiral current, and this vanishes under
this (wrong) assumption.

2. In the real world quarks are not massless, and even if the axial symetry was
exact, this decay would be possible but super suppressed. Too suppressed
to match the exact result.

3. The solution to this puzzle is that the axial anomaly is of course anoma-
lous. So the neutral pion can decay happily into photons, and indeed it
does.

3 Local gauge anomalies

They make the theory inconsistent.
There is a easy way to make a theory free of local gauge anomaly. Only use

Dirac fermions, and gauge field which couple in the same way to the right and
left chirality Weyl fermions composing the Dirac one. Such theories are called
vectorlike.

However, in general, left and right Weyl fermion can be coupled differently
to the gauge field. When this happens, we say the theory is chiral. One example
of chiral theory is the Standard Model, as left and right chirality fermion couple
differently under the weak interaction. Notice that a theory can be chiral only
if the fermions are massless. In order to write a mass term one must use both
right and left chirality Weyl fermions, and in order for it to be gauge invariant,
the left and right fermions must couple to the gauge field in the same way.
Said in other word, fermion masses are only possible for vectorlike matter. This
is precisely the reason for which the Higgs field had to be added to Standard
model.

3.1 Abelian gauge anomaly

Suppose we have NL left-fermions with electric charges QLa and NR left-fermions
with electric charges QRa . In order for the triangle diagram to vanish, we need
to have

NL∑
a=1

(QLa )3 =

NR∑
a=1

(QLa )3 (52)

One obvious solution ot this is taking NL = NR and QLa = QRa . This is
the case of vectorlike theories discussed above. We are interested into more
non-trivial cases.

In 4d, charge conjugation changes particles with antiparticles, and inverts
the chirality. Therefore we can take N left-handed Weyl fermions with charges
Qa = {QLi ,−QRi } and rewrite the equation (52) as:
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N∑
a=1

Q3
a = 0 (53)

We would like to find now what are the possibilities for having an anomaly
free theory. What is the simplest chiral field theory?

1. N = 1. If there is a single charged Weyl fermion, the theory is anomalous.

2. N = 2. We have
Q2

1 +Q2
2 = 0 (54)

The only solution to this equation is Q1 = ±1, Q2 = ∓1. This is the
vectorlike case discussed above.

3. N = 3. We have
Q2

1 +Q2
2 +Q2

3 = 0 (55)

It is clear that the Qi cannot be all positive, or all negative. Then suppose
Q1 and Q2 are positive, and Q3 is negative. Define Qa = (x, y,−z) with
now x, y, z > 0. We need to find the solutions of

x3 + y3 = z3 (56)

Due to Fermat’s last theorem, this equation has no solution. If we would
have taken two negative charges and a positive one, we would have found
the same result.

4. N = 4. We now have two sub-possibilities

(a) Three charges are positive, one is negative

x2 + y2 + z2 = w2 (57)

The simplest solution to this equation are the integers 3, 4, 5, 6. Apart
from this one, infinite sets of solutions were found. Ramanujan found
the following solutions parametrized as

x = 3n2 + 5nm− 5m2, y = 4n2 − 4nm+ 6m2

z = 5n2 − 5nm− 3m2, w = 6n2 − 4nm+ 4m2
(58)

However, the full solution is unknown.

(b) Two charges are positive, two are negative

x2 + y2 = z2 + w2 (59)

The most general solution to this equation is completely known.
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3.2 Non-abelian gauge anomaly

Define the group theory factor as:

dabc(R) = tr[T a{T b, T c}] (60)

For the non-abelian gauge anomaly, we will have contribution from two dis-
tint triangle diagrams where Abν and Acλ are flipped. The anomaly must then
be symetric under the exchange of them. Long story short, the contribution of
a Weyl fermion to the anomaly is completely fixed by group theory.

Consider NL left fermions in a representation RLi, and NR right ones in a
representation RRi. In order to cancel the triangle diagrams, we need

NL∑
i=1

dabc(RLi) =

NR∑
i=1

dabc(RRi) (61)

For example, let us compute the group theory factor for the fundamental
representation of SU(2). We take as generators T i = 1

2σ
i, with σi the Pauli

matrices. Then we have

dabc([1]) = tr[T a{T b, T c}] =
1

8
tr[σa{σb, σc}] =

1

4
tr[σaδb,c] = 0 (62)

so, the anomaly vanishes. Therefore, up to the discussion so far, we conclude
that SU(2) with any number of Weyl fermions in the fundamental representation
does not have local gauge anomalies.

One can do a similar computation for any other group and any other rep-
resentation, provided that an explicit expression of the generators is given. We
will however discuss now a simple result, stating that most of these group theory
factors vanish.

1. If a representation R is real or pseudoreal, then dabc(R) = 0. We will now
prove this statement.

(a) First, recall the definitions of real representation and pseudoreal rep-
resentation: A representation is called real if T̄ a = T a. A repre-
sentation is called pseudoreal if there exist a unitary matrix U such
that

T̄ a = UT aU−1. (63)

(b) We have the following identity of the generators

T̄ a = −T a? = −(T a)t (64)

(c) The proof then goes as follows

tr
[
T a{T b, T c}

]
= tr

(
T aT bT c + T aT cT b

)
= tr T̄ a{T̄ b, T̄ c} =

= tr
[
−(T a)t{(T b)t, (T c)t}

]
= − tr

[
T a{T b, T c}

]
(65)

so we see that tr
[
T a{T b, T c}

]
= 0

Now, we learnt that only gauge groups admitting complex representations
can contribute non-trivially to the anomaly. So, which groups do admit
complex representations?
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2. First look at when a non-abelian complex simple Lie algebra admits com-
plex representation. One necessary condition is that it must have a Z2

outher authomorphism, namely charge conjugation, sending one represen-
tation into the conjugated one. The presence of this outher authomor-
phism can be seen easily from the Dynkin diagram. We conclude it is
possible only for SU(N), SO(2N), E6. However, this condition is neces-
sary but not sufficient. It turns out that not all among the SO(2N) have
complex representations. Only SO(4N+2) do. So we are left with the list
SU(N), SO(2N), E6 as the potential groups which could be anomalous.

3. One can go further, and show that dabc(R) = 0 for any representation of
SO(2N + 2) and E6. So we find a very simple result: only SU(N), N > 2
can suffer local gauge anomalies2.

We would like now to have an easy and practical way to compute the group
theory factor for SU(N). It turns out that

1. All group theory factors have the same tensor structure as the one for the
fundamental representation. Infact, we have.

dabc(R) = A(R)dabc([1, 0, ..., 0]) (66)

so we just need to know dabc([1, 0, ..., 0]) and the coefficient A(R). This
coeffient is called anomaly of the representation.

2. The anomaly of the fundamental representation is one:

A([1, 0, ..., 0]) = 1 (67)

3. Some simple rules for direct sums and tensor products:

A(R1 ⊕R2) = A(R1) +A(R2)

A(R1 ⊗R2) = dim(R2)A(R1) + dim(R1)A(R2)
(68)

4. Complex conjugation flips the sign of the anomaly:

A(R1) = −A(R̄1) (69)

3.2.1 The simplest chiral SU(N) theory

We want now to find what is the simplest chiral theory with SU(N) gauge group
and some matter. If we only use fundamental and antifundamental matter,
then the only way to be anomaly-free is to be chiral. So we need to look at
other representations. The simples irreducible representations of SU(N) are
the second rank symmetric one, and the second rank antisymmetric one.

By using the sules above, one can easily compute

A(symm) = N + 4, A(asymm) = N − 4 (70)

So the easiest possibility with using these representations is taking SU(5)
with a Weyl fermion in the antisymmetric and 1 in the antifundamental. This
is SU(5) with one 10 and one 5̄. We quicky recognize this theory as the SU(5)
GUT.

2Beware tough of the accidental isomorphism SO(6) ' SU(4)
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4 Global gauge anomaly

Also called Witten anomaly.
The statement is that there cannot be an odd number of Weyl fermions in

the fundamental representation of SU(2). This extends also to Sp(n) gauge
groups.

Note that is a theory is vectorlike, then it is also automatically free of Witten
anomaly. In particular, if we do N = 2 QFT without half-hypermultiplets, we
are always sure the theory is free of Witten anomaly.

ZZZZZ FINISH THIS PART

5 Anomaly cancellation in Standard Model

In table 1 we give the matter content of Standard Model.

Multiplet SU(3) SU(2) U(1)

lL = (νe, e) 1 2 −3
qL = (uL, dL) 3 2 +1

lR = (eR) 1 1 −6
uR = (uR) 3 1 +4
dR = (dR) 3 1 −2

Table 1: Fermionic matter content of the Standard Model

A couple of notes are due:

1. We neglet the vectors and the Higgs doublet, as only fermions contribute
to the anomaly.

2. Sometimes people use a different normalization for the hypercharges. This
is totally ok, as long as we rescale all of the same number. In life, we are
always allowed to rescale the generator of U(1). I chose here to have
integer hypercharges.

3. We give the table just for a single family. As we will see, anomalies cancel
family-wise.

4. There are essentially two conventions to write down the matter content of
Standard Model, and labelling the fields:

(a) In the first convention, all particles are left-handed Weyl fermions.
The label L or R has no meaning related to chirality. It only tells if
the multiplet is a SU(2) doublet or a singlet. All anti-particles, of
course, will be right-handed Weyl spinors. In this convention, some of
the multiplets (those with L label) will couple to SU(2) as doublets,
and some of the multiples (those with R-label) will couple to SU(2)
as singlets. Of course, antiparticles with L-label (resp R-label) will
also couple to SU(2) as doublets (resp. singlets).

(b) In the second convention, some particles are left-handed Weyl fermions,
and some are right-handed. In this convention the label L (resp R)
really means that the particle is a left-handed (resp. right handed)
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Weyl fermion. Then in this convention, all left-handed fermions cou-
ple to SU(2) as doublets, and all the right-handed fermions as sin-
glets. Antiparticles, of course, have flipped chirality. So now all
the right-handed particles couple to SU(2) as doublets, and all the
left-handed antiparticles couple to SU(2) as singlets.

Of course, the two conventions are completely equivalent. It is just a
matter of namings. The isomorphism among the two conventions goes
as follows: the sector with L label is identical. For the sector with R
label instead, what is called “particle” in the first convention is called
“antiparticle” in the second.

I personally find the first convention better, as I like my particles to be
all of a definite chirality. It is completely natural and OK for me to
have different particles transforming under different representations of the
gauge group. I find it a bit more confusing to have some particles described
with one kind of spinor, and other described with another one. But still,
it is totally consistent and ok. You can take the convention you want.
Just be warned that half of the literature is written with one, the other
half with the other, so to understand what people mean when they write
eR, for example, you need to be careful about the convention they choose.

Let us now check explicitly that the anomalies cancel.

5.1 Local gauge anomaly cancellation

Let us start with the non-abelian anomaly.

1. For SU(2)3 anomaly all is good: we was SU(2) is always free of local
gauge anomalies.

2. The SU(3)3 anomaly could be potentially dangerous, but a quick look at
Table (1) tell us it is ok: SM is vectorlike with respect to SU(3). Infact
we see that there are two left handed Weyl fermions in the fundamental,
and also 2 right-handed in the fundamental. So we are good.

Let us now look at the abelian anomaly U(1)3.[
2× (−3)3 + 6× (1)3

]
−
[
(−6)3 + 3× (4)3 + 3× (−2)3

]
= 0 (71)

This completes the discussion for non-mixed anomalies. Let us now discuss
mixed anomalies.

1. Turns out that non-abelian factors must all come in pairs, otherwise the
contribution vanished.

2. So we have the possibilities of SU(2)2 × U(1) and SU(3)2 × U(1).

(a)
SU(2)2 × U(1) : −3 + 3× (+1) = 0 (72)

(b)
SU(2)3 × U(1) : 2× (+1)− [4− 2] = 0 (73)

16



5.2 Witten anomaly cancellation

For this, we simply count how many Weyl fermions transform in the fundamental
of SU(2). There are in total four: νe, e, uL, dL. So Witten anomaly is satisfied.

As a nice final comment, consider what would happen to this counting is we
supersymmetrize Standard Model. For every fermion we add a scalar partner,
and for every scalar we add a fermion partner. For every gauge field we add
a fermion, the gaugino. There is a problem immediately arising. Altough not
written in table (1) there exist the Higgs field, which is also in the fundamental
of SU(2). Then the Higgsino would be another fermion in the fundamental of
SU(2). We therefore get to 5 fermions in total, in the fundamental (or 13 if we
count all the families). We see that this naive supersymmetrization of Standard
Model is anomalous.

This is precisely one of the two reasons3 for which in MSSM there are 2
different chiral multiplets in order to describe the Higgs sector. One contains
the SM Higgs and the Higgsino, the other contains a second Higgs and a second
Higgsino.

3Other reason being writing a holomorphic superpotential reproducing the Yukawa cou-
plings
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