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1 Introduction

Many BSM theories assume New Physics particles to be heavier than some New Physics
scale Λ that is significantly larger than the typical energy scales of currently achievable
experiments. By virtue of the decoupling theorem by Appelquist and Carazonne [1],
these heavy degrees of freedom of the corresponding UV-BSM-theory decouple from its
low energy dynamics and hence, can be integrated out. The resulting theory is an effective
field theory that is a correction to the renormalizable Standard Model and is called the
Standard Model Effective Field Theory (SMEFT). The SMEFT can be represented by
the following Lagrangian:

LSMEFT = LSM +
1

Λ

∑
k

C
(5)
k Q

(5)
k +

1

Λ2

∑
k

C
(6)
k Q

(6)
k +O(

1

Λ3
) , (1)

where LSM is the Standard Model Lagrangian, Q(n)
k are operators with mass dimension

n and C
(n)
k are the corresponding dimensionless Wilson coefficients. The SMEFT La-

grangian exhibits the same SU(3)C ×SU(2)L×U(1)Y gauge symmetry as the Standard
Model and it has the same field content.
There are many advantages to this way of describing heavy particle BSM physics but
arguably the most important one is the following. First of all, it is a model independent
way to describe heavy New Physics, which entails that we can derive bounds on the
SMEFT parameters from experiments and subsequently recast them into bounds on the
parameters of specific BSM models instead of having to derive them for each of these
models from scratch. But even better so, thanks to the SMEFT formalism, we don’t
even have to come up with a specific BSM model that describes possible New Physics to
be able to parameterize deviations of experimental results from the Standard Model.

In the following, will introduce the concept of field redefinitions and their connection
to the application of the equation of motion to the Lagrangian, which will be useful for
the subsequent section, where we will sketch how to construct a basis for SMEFT and use
the equations of motion to eliminate redundancies from this basis. Lastly, we will talk
about the renormalization of SMEFT and consequently explore the concepts of operator
mixing and the role played by operators vanishing by the equations.
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2 Field redefinitions

In this section, we will talk about the concept of field redefinitions and the application
of the equations of motion to the Lagrangian, which can be used to remove redundancies
from a set of operators. This is necessary if we want to construct a non-redundant basis
for the SMEFT.
From the path integral point of view, it is clear that that observables are invariant under
redefinitions of the fields1. It is possible to show that at the Lagrangian level, redefining
a field by applying a small shift always amounts to the addition of an operator that
vanishes under the application of the equation of motion of the redefined field. In other
words, we have the freedom to apply the equations of motion to the Lagrangian however
we want without changing observables.
While this statement is almost trivial if we restrict ourselves to the calculation of tree level
diagrams, where all the operators are evaluated between on-shell states and an operator
that vanishes by the equations of motion simply amounts to zero, this statement becomes
non-trivial if we want to generalize it to general S-matrix elements. We will sketch the
proof of this statement in the following.
For simplicity, we will just sketch the proof for the special case of a scalar field φ.
However, this is just for notational purposes, since the proof is no more complicated for
other types of fields. Consider a Lagrangian that can be written as a power series in a
small parameter η:

L =

∞∑
n=0

ηnLn . (2)

In the context of an effective field theory, we can take the small parameter to be e.g.
1/Λ2. The generating functional for the Green’s functions is given as:

Z[ji] =

∫ ∏
i

Dϕi exp

(
i

∫
d4x

[
L0 + ηL1 +

∑
i

jiϕi +O(η2)

])
, (3)

where ji are the sources for each of the fields ϕi. Now let us perform a field redefinition
φ† = (φ′)† + ηT [ϕ] of the scalar field φ and express the generating functional in terms
of the new field φ′. Here, T [ϕ] is any local function of any of the fields ϕ and their
derivatives. We can now express the generating functional as:

Z[ji] =

∫ ∏
i

Dϕ′i
∣∣∣∣ δφ†δ(φ′)†

∣∣∣∣
× exp

(
i

∫
d4x

[
L′0 + δL′0 + ηL′1 + ηδL′1 +

∑
i

jiϕi + jφ†ηT +O(η2)

])
,

(4)

1Essentially, those redefinitions just have to leave the one-particle-states invariant.
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where

L′i ≡Li
(

(φ′)†, ∂µ(φ′)†
)

(5)

δL′i ≡
δL′i
δ(φ′)†

δφ† − δL′i
δ∂µ(φ′)†

δ∂µφ
† , (6)

with δφ† ≡ φ†− (φ′)† = ηT [ϕ] and δ∂µφ
† ≡ ∂µφ†−∂µ(φ′)†. What we did here, is Taylor-

expanding L′i about (φ′)† but equation (6) should look familiar, since this is essentially
the variation of the Lagrangian we know and love from our basic quantum field theory
courses. We know that this is exactly the expression we set to zero when applying the
principle of least action and after partial integration of this expression and applying the
Gaussian theorem, we get

δL′i =

(
δL′i
δ(φ′)†

− ∂µ
δL′i

δ∂µ(φ′)†

)
δφ† (7)

=

(
δL′i
δ(φ′)†

− ∂µ
δL′i

δ∂µ(φ′)†

)
ηT [ϕ] . (8)

The generating functional now reads:

Z[ji] =

∫ ∏
i

Dϕ′i
∣∣∣∣ δφ†δ(φ′)†

∣∣∣∣ exp

(
i

∫
d4x

[
L′0 +

(
δL′0
δ(φ′)†

− ∂µ
δL′0

δ∂µ(φ′)†

)
ηT [ϕ]

+ ηL′1 +
∑
i

jiϕi + jφ†ηT +O(η2)

])
.

(9)

So we see that a field redefinition of the form φ† = (φ′)†+ηT [ϕ] amounts to the addition
of an ”equation of motion”-term derived from the first order Lagrangian L0 to the total
Lagrangian. The ”equation of motion”-term derived from the second order Lagrangian
L1 is already O(η2) so we don’t write it explicitly here. Unfortunately, apart from the
change of the Lagrangian, there are also a Jacobian and an additional source term that
were generated by the field redefinition we performed. It is possible to show that without
loss of generality, we can also neglect those order by order in the expansion in η, so the
statement that we can apply the equations of motion to the Lagrangian without changing
the observables is actually true quite generally. I will not carry out the proof of the fact
that the source term and the Jacobian can be neglected, in these notes, but for details,
I want to refer you to the original paper of the theorem, which this treatment is based
on [2]. In the following section, we will sketch how to systematically construct a basis of
SMEFT operators at mass dimension 6 without any redundancies and in the course of
this, we will see examples of how to use the equations of motion to reduce redundancies
from a set of operators.

3 Construction of a basis for SMEFT

This section is mainly based on [3] and [4]. For further details and a more complete
treatment, I would like to refer you to them.
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We make the (sensible) assumptions that the operators of the SMEFT shall be gauge
invariant, Lorentz-invariant and all the New Physics is described by heavy particles,
hence the new operators only consist of the SM field content. Because we want the
SMEFT to be gauge invariant, it is convenient to consider only gauge covariant objects
as the building blocks for our construction. The building blocks we are going to use
are the fermion fields `jL,p, eR,p, q

α,j
L,p, u

α,j
R,p, d

α
R,p, the Higgs doublet ϕj , the gauge field

tensors Xµν ∈ {GAµν ,W I
µν , Bµν} and covariant derivatives thereof. The index convention

is as follows p = 1, 2, 3 are the generation indices of the fermions, j = 1, 2 are indices of
the fundamental representation of the SU(2)L and α = 1, 2, 3 are the color indices. The
covariant derivative is given as

Dµ = ∂µ − igs
1

2
λAGAµ − ig

1

2
T IW I − ig′Y B . (10)

The only dimension 5 operator compatible with gauge symmetry is

Qνν = εij`cR
i
ϕjεkl`

k
L ϕ

l, (11)

where the c indicates charge conjugation. This operator is a Majorana mass term of the
neutrinos and it violates the lepton number L, which is why we will not pay too much
attention to it in these notes.
We will now proceed with our sketch of how to construct an operator basis for the
dimension 6 SMEFT Lagrangian. Considering that in d = 4, scalar fields have mass
dimension 1, the field strength tensors Xµν have mass dimension 2, fermionic fields have
mass dimension 3/2 and derivatives have mass dimension 1, dimensional analysis already
constrains the combinations of fields and derivatives for operators at a given mass di-
mension.
One of the easiest things to notice is that one can only have an even number of fermionic
fields in order to construct any operator with integer mass dimension2. At dimension
6, we can have four fermionic fields without any bosons or derivatives, which are com-
monly referred to as four-fermion operators. Another possibility are operators with two
fermionic fields and an additional combination of scalar fields, derivatives and a field
strength tensor with a total mass dimension of 3. The last possible class of operators at
dimension 6 are purely bosonic operators, i.e. a combination of field strength tensors,
scalar fields and derivatives.
To give an idea of how to find all the possible operators within these classes, we will focus
on operators with purely bosonic field content as an example. Considering the fact that
the scalars have half-integer SU(2)L isospin, while the other gauge bosons have integer
isospin, it becomes apparent that there must be an even number of Higgs fields and since
the only available objects with an odd number of Lorentz indices are the derivatives,
there must also be an even number of those. With these constraints, we can already rule
out all the possibilities except X3, X2ϕ2, X2D2, Xϕ4, XD4, Xϕ2D2, ϕ6, ϕ4D2 and
ϕ2D4.

2Of course, this does not only follow from dimensional analysis but also from Lorentz invariance.
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Our strategy of classification will be the following. We order the previously listed classes
in such a way that classes containing more covariant derivatives are ”higher classes”.
Classes with the same number of covariant derivatives are ordered based on their num-
ber of field strength tensors, considering the ones with less field strength tensors to be
”higher”. Our strategy will be to first use the equations of motion and other relations to
move operators to ”lower” classes if possible and then list all the independent operators
that are left by using representation theoretical arguments.
Since X is antisymmetric and it cannot be contracted with any combination of ηµν and
εµνρσ in such a way that it doesn’t vanish, the set of operators Xϕ4 is empty. The
operators of the class XD4 can only be contracted in such a way that they contain at
least one commutator of the covariant derivatives and since [Dµ, Dν ] ∼ Xµν , all these
operators either fall into the category X2D2 or X3.
All the operators in the classes ϕ2D4, Xϕ2D2 and X2D2 can be rewritten in terms of op-
erators of other classes by virtue of the equations of motion. We will show the argument
explicitly for the class ϕ2D4 and we can argue analogously for the other two classes.
Let us first write down the equation of motion of the scalar derived from the Standard
Model Lagrangian3:

(DµDµϕ)j =m2ϕj − λ(ϕ†ϕ)ϕj − ēΓ†e`j + εjkq̄
kΓuu− d̄Γ†dq

j , (12)

where Γe,u,d are the Yukawa matrices and εjk is the totally antisymmetric tensor.
Let us consider the operators of the class ϕ2D4. To satisfy SU(2)L × U(1)Y invariance,
each operator has to contain one ϕ and one ϕ†. Since the covariant derivative given in
equation (10) can be written as Dµ = ∂µ− iMµ, where Mµ is a hermitian object, we can
infer that

(Dµϕ)†ϕ+ ϕ†Dµϕ = (∂µϕ
†)ϕ+ i(Mµϕ)†ϕ+ ϕ†∂µϕ− iϕ†Mµϕ

= (∂µϕ
†)ϕ+ ϕ†∂µϕ

= ∂µ(ϕ†ϕ) ,

(13)

and therefore, generalizing to multiple applications of the covariant derivative to ϕ† and
ϕ, we can schematically write

(Dnϕ)†(Dmϕ) = −(Dn+1ϕ)†(Dm−1ϕ) + ∂
[
(Dnϕ)†(Dm−1ϕ)

]
. (14)

Hence, we can reexpress all the operators in the class ϕ2D4 in the form of

(D4ϕ)†ϕ+ ∂(. . .) . (15)

Total derivatives have no physical effect by virtue of the Gaussian theorem, so we can
safely neglect them, hence the only type of operator we have to consider is (D4ϕ)†ϕ.

3As explained in the previous section, the application of the O( 1
Λ

) terms of the equations of motion
to the O( 1

Λ2 ) terms of the Lagrangian are only going to generate O( 1
Λ3 ) terms. Hence, we can savely

ignore them at O( 1
Λ2 ).
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All possible contractions with εµνρσ lead to appearances of commutators of the covariant
derivative [Dµ, Dν ] ∼ Xµν , which would move the operator to a lower class. This also
leads to the observation that we can order the covariant derivatives as we want, since
reordering will simply generate an additional operator of a lower class. Because of this,
we can rearrange the covariant derivatives of all the operators of this class such that
they all contain DµD

µϕ, which can be replaced by the right hand side of the equation
of motion (12). This moves all the operators of this class to the classes ϕ4D2, ψ2ϕD2

and the class of dimension 4 operators D2ϕ2. In conclusion, by use of the equation of
motion of ϕ and other arguments, we were able to rewrite all the operators of this class
in terms of operators of lower classes.
Let us now consider the class ϕ4D2. In order for the net hypercharge of the operators to
be zero, exactly two ϕ fields must be complex-conjugated. The two covariant derivatives
must be contracted with each other in order to fulfill Lorentz invariance and since the
case with two derivatives acting on the same field can be moved to lower classes by using
the equations of motion, we only have to consider the case where the derivatives act on
different ϕ fields.
The case where the two derivatives both act on the unconjugated fields or where they both
act on the conjugated fields can be rewritten in terms of the case where one derivative
acts on an unconjugated field and one on a conjugated field by using equation (14) and
partially integrating, e.g.:

(ϕ†Dµϕ)(ϕ†Dµϕ)
(14)
= −(ϕ†Dµϕ)((Dµϕ)†ϕ) + ∂µ(ϕ†ϕ)(ϕ†Dµϕ)

p.i.
= −(ϕ†Dµϕ)((Dµϕ)†ϕ)− (ϕ†ϕ)∂µ(ϕ†Dµϕ)

(14)
= −(ϕ†Dµϕ)((Dµϕ)†ϕ)− (ϕ†ϕ)((Dµϕ)†Dµϕ)− (ϕ†ϕ)(ϕ†DµD

µϕ) .

(16)

We can use the equation of motion on the last term in the last line to move it to a lower
class. The other terms each have one covariant derivative acting on an unconjugated field
and one acting on a conjugated field. After these reductions, there are only two inde-
pendent SU(2)L-singlets left we can construct. One possible choice of two independent
singlets would be:

(ϕ†τ Iϕ)[(Dµϕ)†τ I(Dµϕ)] (ϕ†ϕ)[(Dµϕ)†(Dµϕ)] . (17)

The classification of the operators in the other classes can be performed in a similar way.

4 Operator Mixing and EOM-vanishing operators

In order to be able to use the SMEFT quantitatively, it’s Wilson coefficients C
(
kn) need to

be renormalized order by order in the 1
Λ expansion in order to account for UV divergences.

The EFT operators can mix into each other under renormalization, i.e. in general

C
(n),bare
j Q(n)

j =
∑
i

CiZijQ(n)
j , (18)
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where Zij is the matrix of renormalization constants that relates the bare couplings to
the renormalized ones:

C
(n),bare
j =

∑
i

CiZij . (19)

Here, Q(n)
j denotes the SMEFT operators of mass dimension n consisting of renormalized

Standard Model fields.
Observables do not depend on the renormalization scale µ, hence the bare Wilson don’t
either. From this, we can derive that

0 =
dC

(n),bare
j

dµ
=
∑
i

[
dC

(n)
i

dµ
Zij + C

(n)
i

dZij
dµ

]
, (20)

which is commonly rewritten as

dC
(n)
j

d logµ
= C

(n)
i γij , (21)

where we defined the anomalous dimension matrix (ADM)

γij =
∑
k

−(Z−1)kj
dZij

d logµ
(22)

that describes mixing of the Wilson coefficients under the renormalization group evolu-
tion.
There is a caveat in the renormalization procedure, though: Some operators can generate
divergencies proportional to operators that are not part of our basis but appear in the
equations of motion. For example in the renormalization of the effective Lagrangian for
weak decays, one can construct a basis that only consists of four-quark operators like the
operator

Oq = ūγµPLsd̄γµPLu . (23)

This operator induces the divergent penguin diagram displayed in figure 1, which has a
divergence proportional to

OP = d̄TAγµPLsgs[D
ν , Gνµ]A , (24)

which is no linear combination of the operators in the basis of four-quark operators, even
though the basis is complete. However, when calculating physical observables, we can
use the equations of motion to rewrite this operator in terms of the four-quark operators
and this enables us to study the ADM in the four-quark operator basis.
It is important to note that while redundant operators like Oq may appear in the cal-
culations, they should not be included in the basis because otherwise the ADM is not
uniquely determined, since one can arbitrarily add operators that vanish by the equa-
tions of motion to the renormalization group equation by virtue of field redefinitions. The
arbitrary parameters we would introduce in the ADM could be renormalization scheme
and gauge dependent, which is obviously not physical.
For further details, please see [5] and the corresponding follow-up papers.
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Figure 1: Penguin diagram for s→ d transition
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