Search for Hidden Particle (SHiP)

A "Flagship" of the Physics-Beyond-Collider projects in the CERN diversity strategy

TDR topics in the area of "Querschnittsthemen"

Heiko Lacker, HU Berlin

12.5.2020

1) Veto: * Detection of charged particles (muons) entering the decay vessel from outside

* Detection of ν DIS in decay vessel walls

2) Extend signal efficiency for $N \rightarrow I^{-}\rho^{+} \rightarrow (\pi^{+}\pi^{0})$

LS-based Surround BG Tagger (SBT)

Optical coupling to 40-SiPM ring array

LS-SBT: SHiP-specific and of general interest

- * High efficiency (99.9%) and homogeneity over cell area
- * High-transparency materials (scintillator, PMMA)
- * Alternative WLS; separation btw Cherenkov & scintillation light
- * ns Timing & energy share btw WOMs in same/adjacent cells
 - \rightarrow BG suppression
 - \rightarrow spatial resolution
 - \rightarrow particle direction
 - \rightarrow e/ γ identification from preshower
- * SiPMs: dynamic range; onboard powering and LED calibration; cooling (?)

* Possible further WOM application beyond SHiP: Plastic-scintillator sandwich calo with → small #channels per area

- $\rightarrow\,$ reasonable spatial resolution
- \rightarrow longitudinal shower info

M. Ehlert^a, A. Hollnagel^b, I. Korol^a, A. Korzenev^c, H. Lacker^a, P. Mermod^c, J. Schliwinski^a, L. Shihora^a, P. Venkova^a, M. Wurm^b

JINST 14 (2019) no.03, P03021, arXiv:1812.06460

Proof-of-principle measurements with a liquid-scintillator detector using wavelength-shifting optical modules

TDR phase: 4-cell demonstrator detector

- Testbeam measurements in 2023
- Test version of FE, concentrator electronics, and SiPM PCB w/ powering, LED calibration, (cooling)

• WOM design

- Demonstrate detector requirements and combine adjacent cell info
- Address (decay-vessel) integration questions: reflectivity coating, LS filling and emptying

7

The Electromagnetic Calorimeter

"SplitCal" Baseline Design

SplitCal: Performance

400

350

300

200 -

150 -

100 -

2 4 6 Standard deviation of particle shower [cm]

FairSHiP simulation Y

Testbeam data Y

2 4

Standard deviation of particle shower [cm]

TDR phase

Scintillator SiPM Readout

- Prototype readout too expensive (and clumsy) for O(40k) channels.
- Better: ASICs near SiPMs for signal collection & digitization.

Requirements:

- Large dynamic range (MIPs as well as e.m. showers).
- SiPM calibration.
- Multiplexed digital output because of high # of channels.

Main R&D topic at the moment.

KLauS chip from Uni Heidelberg is an option

Technological prototype

Next step:

Technological prototype

- Involves all required materials and technologies and demonstrates the feasibility and functionality.
- Front face of about 1.5 m x 1.5 m.
- ▶ 10 scintillating layers (5 x, 5 y) and 2 high-precision layers.
- **500 SiPM channels and 25200 MicroMegas channels.**
- Close to final Readout with ASICs.
- Mechanical integration.

To be built for the TDR

Spectrometer Straw Tracker (SST)

Reconstruct tracks of charged particles

Do tracks correspond to veto and timing detector hits? Do tracks have a common vertex? Does the mother particle point back to the target?

Womentum reconstruction

Straw Tubes

Suitable technique

Wall thickness $36 \,\mu m$ CoatingAu (20 nm), Co (50 nm)Diameter2 cmLength5 m

Operated with Ar/CO₂ @1 bar Shorter tube tested in 2017 Testbeam: CERN-SHiP-INT-2019-005

But adding more challenges ...

Prototype with Four Tubes

D. Bick (UHH)

Summary and Outlook

Technology well suited but mechanics challenging

- Vivid R&D ongoing
- Alternative designs under study
 - converge to one design for TDR
- Working prototype **@UHH**
 - Concept based on well established technology from NA62 and OPERA
 - First ever working 5 m long prototype now operating in our lab

Concept documented in CERN-SHiP-INT-2019-006

Next step: design of a 64 strawtube module

Rough design for a frame exists (more a proof of concept) ightarrow further work needed .

COMMON FEE: GEROLD IC AS A FRONT-END IN DETECTOR READOUT CHAIN - BENEFITS

small area (cost reduction during mass production, reliability)

- less material budget (PCB, cables, etc.)
- less total power consumption, less cables
- smaller footprint \rightarrow less cooling

programmability/high functionality/scalability (cost reduction, reliability)

- more data analysis on chip \rightarrow data reduction \rightarrow less cables for data transfer
- for next stages of DAQ (e. g. concentrators) less processing power required
- feature extraction (ToT, charge, clustering) at early stages of signal processing, error correction ... – reliability, data reduction, less material budget for cables, etc.
- generic readout for future detectors a single platform with easy reconfigurability

physics benefits (ease of use, rich functionality, reliability)

- more possibility for online data processing & data analysis close to detector sensors
- better feature extraction due to multi-channel architecture: e. g. data clustering
- single chip for different sub-detectors & experiments, generic readout for future detectors
- radiation tolerant

application schedule

- detector development takes 5-10 years from initial idea to start of production
- often still no time to develop new architecture, often only reuse of concepts
- GEROLD can be used to build a reference system with core functionality

→ Development of the RX chain is possible in less than 2 years from idea to mass production of the components if it is building on a flexible, highly integrated Chip!

multi-channel, programmable front end w/ A/D functionality, digital data processing, high speed communication

Daisy-chaining of chips into a single data bus allows for saving on cable costs and ease interconnection complexity

SHiP TDR phase (2021-24): Rich program with connected topics and possible links to other R&D activities to define one or several applications in "Querschnittsthemen"

	Large area	SiPMs	Scint.	Common FE/ Concentrator	Timing	Directional/ spatial info	Shower profile	Tracker	Triggerless Readout
SBT	X	X	Liquid	X	X	X			X
SST	X			X				X	x
SplitCal	X	X	Plastic		X	"Pointing"	X	X	X
WOM- based Calo	X	X	Plastic (Liquid)	X	x	X	X		(x)