Inclusive Jet

Patrick Connor

Inclusive Jet Analysis

The toy RM, step by step (Part 1)

Patrick L.S. Connor

Deutsches Elektronen-Synchrotron Hamburg

7 May 2020

Introduction.

Inclusive Jet
Patrick Connor

Introduction
Rec level
Summary \& Conclusions
$2 / 19$

Introduction

Status

- AN and paper draft shared with L2 \& L3 conveners \longrightarrow no feedback...
- However, still trying to improve understanding of systematic effects \longrightarrow remove (or at least reduce) additional bin-to-bin systematic uncertainties.
- Suspecting issue(s) somewhere in unfolding because of tensions in QCD fits:
- tension between three first rapidity bins and forward region;
- instabilities close to the edge of the phase space.

Inclusive Jet
Patrick Connor

Introduction
Rec level

Introduction

Generalities

Traditionally, two methods exist to construct the RM:
sample obtained directly from matching jets in MC samples
toy constructed by hand from "a" gen-level spectrum and the smearing obtained from the MC samples
pros and cons
\longrightarrow see appendix

Present analysis

- Avoid additional statistical uncertainties from MC samples (also a natural way to avoid problem of regularisation).
- Reduce model dependence as much as possible.
- Correctly account for correlations among jets in a single event.
- Disentangle all possible sources of systematic uncertainties to improve control on pulls in QCD fits.
\longrightarrow despite the (potential) need for multi-dimensional unfolding, seems better to go for a toy RM.

Inclusive Jet
Patrick
Connor
Introduction
Rec level
Summary \& Conclusions
Back-up

Introduction

Current implementation (corresponding to the AN)

- Toy 1D unfolding.
- Background, inefficiencies \& migrations among rapidity bins applied as correction factors.
- Transverse momentum is Gaussian-smeared (i.e. no correction for non-Gaussian deviations).

Revisited (and improved) procedure

(1) First reproduce effect of detector to go from gen to rec level \longrightarrow topic of the day.
(2) Then construct iteratively a gen-level spectrum with which we will construct the RM to unfold the rec-level \longrightarrow topic of a next presentation.

Rec level.
Background
Inefficiencies
Resolution
Migrations among rapidity bins
Toy / rec

Inclusive Jet
Patrick Connor

Introduction
Rec level Background Inefficiencies Resolution Migrations among rapidity bins Toy / rec
Summary \& Conclusions

Back-up

Rec level

Effects

- Gaussian width
\longrightarrow resolution
- Gaussian mean
- Background
\longrightarrow energy scale
- Inefficiencies
\longrightarrow fake jets
- Cross-rapidity migrations
- Corrections to Gaussian Ansatz
\longrightarrow for the two last ones: the migrations among rapidity bins are usually treated as miss/fake entries in 1D unfolding; corrections to Gaussian Ansatz are usually ignored (although sometimes a Crystal-Ball function is used...)

Goal

Get a smooth function describing each of these effects separately.

Inclusive Jet
Patrick Connor Introduction Rec level Background Inefficiencies Resolution Migrations among rapidity bins Toy / rec

Summary \& Conclusions Back-up
$6 / 19$

Background

Miarations out of ohase snace

Figure

- Steeply falling spectrum.
- Applied as a correction factor after the convolution.
- Significantly large values may have large impact.
- Result in two first rec-level bins is expected to be unstable.
- Migrations to $|y|>2.5$ are visible in the last rapidity bin.

Inclusive Jet

Patrick

 Connor IntroductionRec level
Background Inefficiencies Resolution Migrations among rapidity bins Toy / rec

Summary \& Conclusions

Background

Real background

Figure

- Most likely corresponding to pile-up jets and detector noise.
- Applied as a correction factor after the convolution.
- No significantly large values.
- Not expected to cause troubles.

Inclusive Jet Patrick Connor Introduction

Rec level Background Inefficiencies Resolution Migrations among rapidity bins Toy / rec

Summary \& Conclusions Back-up

8/19

Inefficiencies

Miqrations out of phase space

Figure

- Steeply falling spectrum.
- Applied as a correction factor in the convolution.
- Significantly large values may have large impact, especially if extracted from fit instead of histogram.
- Result in two first rec-level bins is expected to be unstable.

Inclusive Jet Patrick Connor Introduction

Rec level Background Inefficiencies Resolution Migrations among rapidity bins Toy / rec
Summary \& Conclusions Back-up

Inefficiencies

Real inefficiencies

Figure

- Most likely corresponding to MET filters (high p_{T}), hot zones (global effect), prefiring issue (large η).
- Applied as a correction factor in the convolution.
- No significantly large values.
- Not expected to cause troubles.

Inclusive Jet

Patrick Connor

Introduction
Rec level
Background Inefficiencies Resolution Migrations among rapidity bins Toy / rec Summary \& Conclusions

Back-up

Definition

$$
\begin{equation*}
\Delta=\frac{p_{T}^{\mathrm{rec}}-p_{T}^{\mathrm{gen}}}{p_{T}^{\mathrm{gen}}} \tag{1}
\end{equation*}
$$

\longrightarrow on the LHS (RHS), migrations to lower (larger) p_{T}

Shape

- Only RHS of the core is found to be Gaussian in all phase space!
- Deviation on LHS is due to matching with pile-up (see back-up).
- Additional tails, especially at low p_{T} and large y.

Next slides

Normalised resolution curves (histogram, Gaussian fit, and difference)

Resolution

Inclusive Jet

Patrick

 Connor
Introduction

Rec level Background Inefficiencies Resolution Migrations among rapidity bins Toy / rec

Summary \& Conclusions

Back-up

Resolution

Inclusive Jet
Patrick Connor
$12 / 19$

Resolution

Pile-up bump?

Matching?

- Scan rec-level and look for a match a gen-level or vice-versa? \longrightarrow does not change
- Within a cone, we take the highest p_{T} jet
\longrightarrow but don't take the closest (too sensitive to pile-up \& screws up the shape of the distribution).

Ideas?

- Include condition based on PU jet discriminator?
\longrightarrow limited to low $p_{T}^{\text {rec }}$
- Look at jet constituents?
\longrightarrow potentially very long and tedious task...
- ...?

Inclusive Jet
Patrick Connor

Is it relevant?

- The bump itself is only a small (but sizeable, unlike the tails) effect (\sim statistical uncertainties).
- At the moment, it is just ignored, and some small test show that the effect is indeed minor.
- At the end, we should account for it...
- ... but more important is that it spoils the fit of the core of the resolution
curve...
\longrightarrow especially the mean will be less precise

Resolution

Pile-up bump?

$13 / 19$

Inclusive Jet

Patrick

 Connor IntroductionRec level Background Inefficiencies Resolution Migrations among rapidity bins Toy / rec Summary \& Conclusions Back-up

Resolution

Resolution width

Fit function for resolution width

$$
\begin{equation*}
\frac{\Delta}{p_{T}^{\text {gen }}}=\sqrt{\frac{a}{p_{T}^{\text {gen2 }}}+\frac{b}{p_{T}^{\text {gen }}}+c} \tag{2}
\end{equation*}
$$

Figure

- Shown here for 1D (see later for 2D).
- Only the RHS of the core of the resolution curve is found to be Gaussian.
- Mean is shown in black, and fitted with a Chebyshev polynomial in orange (note: not exactly used as such later in the presentation).

Inclusive Jet
Patrick Connor

Introduction
Rec level
Background Inefficiencies Resolution Migrations among rapidity bins
Toy / rec
Summary \& Conclusions

Back-up

Migrations among rapidity bins

Inclusive Jet

Patrick
Connor

Introduction

Rec level

Background

 Inefficiencies Resolution

Inclusive Jet

Inclusive Jet Connor Introduction

Rec level Background Inefficiencies Resolution Migrations among rapidity bins Toy / rec
Summary \& Conclusions Back-up

18/19

Figure

Gen level is smoothed and compared to the rec level of Pythia

Toy / rec

 after all usual corrections for $p_{T}>74 \mathrm{GeV}$.

Comments

- The effect of the mean and width of the resolution are by far the dominant effects.
- Background and inefficiencies are also sizeable effects.
- However, the deviations from the Gaussian shape themselves are minor effect (but the pile-up bump screws up the fit of the resolution curves).
\longrightarrow actually, the mean used here is not extracted from the fit, but extracted from the histogram (better, but still suboptimal).

Summary \& Conclusions.

Inclusive Jet

- Only missing piece is a robust fit that gives a good value for the mean.
- Once this is done, proceed to next step and reconstruct the gen level of Pythia based on analytical functions, and then go to unfold real data (AK4 + AK7).

Patrick
Connor

Summary \& Conclusions

- The goal of the exercise is to define a set of analytical functions able to reproduce the effect of the detector in order to construct a toy RM.

Thank you for your attention!

19/19

Back-up.

Inclusive Jet

Sample vs toy

Sample

(1) Easier to implement, even for $d>1$.
(2) Limited by statistics of the sample, potentially implying the need for regularisation.
(3) Model dependence not straightforward to estimate.
(4) Should include all effects from the detector at a time.

Toy
(1) Less easy to implement, especially for $d>1$.
(2) Take "some theory curve" and smear it with resolution obtained from the MC samples (after JES corrections \& JER smearing).
(3) Not limited by statistics, avoid additional regularisation.
(4) Better control on model dependence by appropriate choice of gen-level distribution.

Inclusive Jet
Patrick
Connor

Pythia Flat w/o PU

Inclusive Jet
Patrick Connor

Pythia Flat w/ PU

AK4 anti k_{T} algorithm $(R=0.4)$. 22
AK7 anti k_{T} algorithm ($R=0.7$). 22
AN Analysis Note. 3, 5
JER Jet Energy Resolution. 24
JES Jet Energy Scale. 24
MC Monte Carlo. 4, 24
PU pile-up. 14
QCD Quantum Chromodynamics. 3, 4
RM Response Matrix. 4, 5, 22

F

