PROGRAM
Matter and Technologies
from PoF-III to PoF-IV

Anke-Susanne Müller, Ties Behnke
(MT Spokespersons)
We Research Technologies

Our Team...

> 400 FTE/y
> 80 Mio EUR/y
Research in *Matter* is bold and broad

- It relies on people and on advanced technologies

MT is a program for the future of *Matter* closely intertwined with MML and MU

Matter and Technologies

Technologies for Science

- Accelerator science
- Detector science
- Data analytics

Matter and Technologies

- **Research & Development (R&D)**
 - Fundamental R&D
 - Research in technologies

- **Growth**
 - Prototyping
 - Designing systems
 - Scalability

- **Maturity**
 - Developing facilities
 - Building infrastructures
 - Applications

- **Finalization**
 - Decommissioning

Other areas

- **Tech Transfer**

User communities
Matter and Technologies
Technologies for Science

- Research in Matter is bold and broad
- It relies on people and on advanced technologies

MT is a program for the future of Matter closely intertwined with MML and MU

Accelerator science
Detector science
Data analytics

ARD
DTS
DMA
IDAF

R&D
• Fundamental R&D
• Research in technologies

Maturity
• Developing facilities
• Building infrastructures
• Applications

Finalization
• Decommissioning

User communities
The MT Structure in PoF-IV

Program Matter and Technologies (MT)
T. Behnke (DESY) | A.-S. Müller (KIT)

Topic Accelerator Research and Development (MT-ARD)
A. Jankowiak (HZB) | J. Osterhoff (DESY)
DESY, FZ, GSI* with HIM and HI Jena, HZR, HZDR, KIT

Topic Detector Technologies and Systems (MT-DTS)
M. Weber (KIT) | S. Masciocchi (GSI)
DESY, GSI* with HIM and HI Jena, KIT

Topic Data Management and Analysis (MT-DMA)
M. Bussmann (HZDR) | V. Gülzow (DESY)
DESY, FZ, GSI with HI Jena, HZB, HZDR, HZG

Subtopics:
- Subtopic 1: Advanced CW SF Systems
- Subtopic 2: New Concepts and Prototypes for Maximizing the Performance of Hadron and Electron Accelerators
- Subtopic 3: Advanced Beam Control, Diagnostics and Dynamics
- Subtopic 4: Ultra Compact, Novel Accelerators and their Applications

Subtopics:
- Subtopic 1: Detection and Measurement
- Subtopic 2: System Technologies
- Subtopic 3: Science Systems

Subtopics:
- Subtopic 1: The Matter Information Fabric
- Subtopic 2: The Digital Scientific Method
- Subtopic 3: The Digital Experiment and Machine

User Facility IDAF
C. Voss

ARD
DTS
DMA
IDAF

LK I
LK II

HELMHOLTZ
MT in numbers

Budget and people

2021

Budget

<table>
<thead>
<tr>
<th></th>
<th>ARD</th>
<th>DTS</th>
<th>DMA</th>
<th>IDAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>kEUR</td>
<td>60k</td>
<td>4k</td>
<td>2k</td>
<td>1k</td>
</tr>
</tbody>
</table>

Scientific support

- ARD: 250 FTE
- DTS: 150 FTE
- DMA: 100 FTE
- IDAF: 50 FTE

Doctoral researchers

- ARD: 200 FTE
- DTS: 100 FTE
- DMA: 50 FTE
- IDAF: 25 FTE

Scientists

- ARD: 150 FTE
- DTS: 75 FTE
- DMA: 25 FTE
- IDAF: 12.5 FTE
MT in numbers
from 2017 to 2021

we’ve grown!
People Matter
Visibility & Attractiveness of MT

Establish research into technologies as a recognized research activity in its own right
Create visibility and recognition for science and people

We are a diverse group of excellent and highly motivated people in MT

- Joint professorships in accelerator physics increased by a factor 3

Bar chart showing:
- Phd
- Postdoc
- Senior
- International scientists
- Before MT
- MT 2019
MT is an active community
- MT annual meeting
 - 300 people, 170 contributions
- Topical meetings
- Working groups

Fostering young talents
- Annual meeting as a forum for younger researchers
- Annual MT student retreat
- Dedicated topical schools
 - Scientific and technical
- Participation in graduate schools (DASHH, PIER, HEIBRIDS, KSETA, …)
Cooperation and Societal Impact
Adding New Dimensions to MT

Structure-building measures:
Adding specific networking measures

- Innovation Pool
- Matter Forum
- Initiative and Networking Fund (IVF)
- Cross-Cutting Activity (CCA)
- Technology Transfer (TT)
Cooperation and Societal Impact
Adding New Dimensions to MT

Structure-building measures:
Adding specific networking measures

Example: PLASMED X

Compact accelerator
Advanced detector
Medical imaging

Vision: Bring the technology to the hospital

Work supported by the BMBF Innovation Pool and Matter Forum

- Innovation Pool
- Matter Forum
- Initiative and Networking Fund (IVF)
- Cross-Cutting Activity (CCA)
- Technology Transfer (TT)
Innovation and Technology Transfer
Setting Standards

Example: MicroTCA* electronics

Necessity of scalability, modularity, availability

Seed money from Helmholtz

A worldwide success
Currently used by 55 laboratories and 12 partner companies

*Micro Telecommunications Computing Architecture
Innovation and Technology Transfer
Setting Standards

Example: MicroTCA* electronics

Necessity of scalability, modularity, availability

Seed money from Helmholtz

A worldwide success
Currently used by 55 laboratories and 12 partner companies

Development with transfer in mind:

- Install standards & common, transferable solutions
- Move from single-application solutions to systems

Implement transfer strategy based on center support structures with MT-specific monitoring

MT is living transfer in all its aspects, from commercialization to transfer by minds and joint supervision of doctoral researchers with industry

*Micro Telecommunications Computing Architecture
The PoF-IV Evaluation
Five Steps into the Future

Center level
Programme level

High level guidelines of the federal and state ministries:
- Non negotiable part
- Goals, to be defined in a dialogue with the funding agencies

The four dimensions of the evaluation:
- Objectives
- Work plan
- Scientific Quality and Resource planning
- Impact & Risks
The PoF-IV Evaluation

The Grades

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>outstanding</td>
<td>Extremely strong performance at the level of international leadership. Groundbreaking research with transformative impact and/or with high potential for significant societal impact. Essentially no weaknesses.</td>
</tr>
<tr>
<td>excellent</td>
<td>Very strong performance and innovative research at an exceptionally high international level. Significant impact on the field and/or potential for significant societal impact. Some negligible or minor weaknesses.</td>
</tr>
<tr>
<td>very good</td>
<td>Strong research at the level of national leadership. Considerable impact on the field. Several minor weaknesses</td>
</tr>
<tr>
<td>good</td>
<td>Overall performance at a nationally competitive level with solid potential for impact on the field. Several minor and at least one moderate weakness.</td>
</tr>
<tr>
<td>fair</td>
<td>Mediocre performance and unconvincing research approaches. Limited potential for relevant impact on the field. At least one major weakness.</td>
</tr>
</tbody>
</table>
The PoF-IV Evaluation

The Categories

<table>
<thead>
<tr>
<th>Funding category</th>
<th>Resource Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter and the Universe</td>
<td></td>
</tr>
<tr>
<td>Fundamental Particles and Forces</td>
<td>A Confirmed</td>
</tr>
<tr>
<td>Cosmic Matter in the Laboratory</td>
<td>C Confirmed</td>
</tr>
<tr>
<td>Matter and Radiation from the Universe</td>
<td>B Confirmed</td>
</tr>
<tr>
<td>Matter and Technologies</td>
<td></td>
</tr>
<tr>
<td>Accelerator Research and Development</td>
<td>A Confirmed</td>
</tr>
<tr>
<td>Detector Technologies and Systems</td>
<td>B Confirmed</td>
</tr>
<tr>
<td>Data Management and Analysis</td>
<td>B Confirmed</td>
</tr>
<tr>
<td>From Matter to Materials and Life</td>
<td></td>
</tr>
<tr>
<td>Dynamics, Mechanisms and Control</td>
<td>B Confirmed</td>
</tr>
<tr>
<td>Quantum, Complex and Functional Materials</td>
<td>B Confirmed</td>
</tr>
<tr>
<td>Building Blocks of Life: Structure and Function</td>
<td>A Confirmed</td>
</tr>
</tbody>
</table>

Funding Recommendations

The rationale for the assignment of the topics to the funding categories and the assessment of the resource plan is provided in detail in the topic sections.

Funding Categories of the Topics

<table>
<thead>
<tr>
<th>Funding Category</th>
<th>Increase of budget in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category A (2021)</td>
<td>2.6</td>
</tr>
<tr>
<td>Category B</td>
<td>1.5</td>
</tr>
<tr>
<td>Category C</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Definition of funding categories

A: Outstanding in all four dimensions

B: Outstanding and excellent grades

C: >= One dimension very good or lower
The strong leadership of Helmholtz centers in particle accelerator R&D should be strongly and fully supported.

To proceed with the proposed milestones of the work programme (ARD1 to ARD 16).

To add a milestone on energy efficient R&D for future technical infrastructures and accelerator projects.

<table>
<thead>
<tr>
<th>Goals</th>
<th>Work Program</th>
<th>Competences and Resources</th>
<th>Impact and Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outstanding</td>
<td>Outstanding</td>
<td>Outstanding</td>
<td>Outstanding</td>
</tr>
</tbody>
</table>
The PoF-IV Evaluation

Recommendations - DTS

- Full support of the DDL proposal would retire the risk.
- Support sustainable career strategies, which ensure the availability of key technologists (e.g. ASIC engineers).
- Deliver on the program and milestones.

<table>
<thead>
<tr>
<th>Goals</th>
<th>Work Program</th>
<th>Competences and Resources</th>
<th>Impact and Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outstanding</td>
<td>Outstanding</td>
<td>Outstanding</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

Program Matter and Technologies

Topic 2 – Detector Technologies and Systems
The PoF-IV Evaluation
Recommendations - DMA

- This very strong vision should come to a mature project.
- Continue with the present activities.

<table>
<thead>
<tr>
<th>Goals</th>
<th>Work Program</th>
<th>Competences and Resources</th>
<th>Impact and Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outstanding</td>
<td>Excellent</td>
<td>Outstanding</td>
<td>Excellent</td>
</tr>
</tbody>
</table>
The PoF-IV Evaluation

Our Results

<table>
<thead>
<tr>
<th>Funding category</th>
<th>Resource Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter and Technologies</td>
<td></td>
</tr>
<tr>
<td>Accelerator Research and Development</td>
<td>A</td>
</tr>
<tr>
<td>Detector Technologies and Systems</td>
<td>B</td>
</tr>
<tr>
<td>Data Management and Analysis</td>
<td>B</td>
</tr>
</tbody>
</table>

Increase of budget in %

<table>
<thead>
<tr>
<th>Category</th>
<th>Increase of budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category A (2021)</td>
<td>2.6</td>
</tr>
<tr>
<td>Category B</td>
<td>1.5</td>
</tr>
<tr>
<td>Category C</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Congratulations everyone! 9 out of 12 possible “outstanding” grades:
Our Way into the Next 7 Years

Our Vision

- Establish MT
 - Set up structures
 - Build up infrastructure

- Exciting Science
- Research infrastructures
- Common projects
- Vibrant community
- Working structures
- International visibility

- Make new accelerators happen
- Push the detection limits
- Master the data challenge