Physics-Based Deep Neural Networks for
Beam Dynamics in Charged Particle
Accelerators

AMALEA Helmholtz Innovation Pool project

Andrei lvanov
Hamburg, 18.06.2020

HELMHOLTZ &ici s



\‘\\

Upgrading-to 4th genec@tlon Ilght SQué
(PETRAIV) ne.ed ac e
Control foriop

« The resolution gap between 1-10 nanometers

* Reliability demands grow (95% -> 99%) AR
« Machines are more sensitive with larger number S ML
of components

* High nonlinearities
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Big Data is all about finding correlations

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN (DLLECT

well-posed problem THE ANSLERS ON THE OTHER SIDE.
WHAT IF THE ANSLERS ARE LIRONG? )
high performance computing JUST STR THE PILE UNTIL
THEY START LOOKING RIGHT.

ubiquitous data

In the real-world, application of ML is more difficultthan in research:

https://xkcd.com/1838/
* learning on the real system from limited samples

* high-dimensional continuous state and action spaces.

- safety constraints that should never or at least rarely be violated

« tasks that may be partially observable, alternatively viewed as non-stationary or stochastic
« system operators who desire explainable policies and actions

» inference that must happenin real-time at the control frequency of the system

DESY. Physics-based Deep Neural Networks | Andrei Ivanov Page 3



Novel approach for constructing deep neural networks
for beam dynamics

with the following key features:
ECAl o

oral presentation at the

. . . .. European Conference
- model fine-tuning with limited measurements on Antficial teligonoe

= accurate simulation of dynamics without training
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Novel approach for constructing deep neural networks
for beam dynamics

with the following key features:

. . N . ECAlzcz
= accurate simulation of dynamics without training _
oral presentation at the
: : T E Conf
- model fine-tuning with limited measurements R o

on Artificial Intelligence

The key idea: If the dynamics of a system approximately follows a given differential equation, the Taylor mapping

technique can be used to initialize the weights of a polynomial neural network
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Novel approach for constructing deep neural networks
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Translating lattices of the storage rings into deep neural
networks

FODO: neural network with 12 layers represents resonance

d qf sf

Initialized NN accurately represents the parametric dependency of dynamics on
magnet strength, such as the appearance of a third-integer resonance

PETRAIII: deep neural network with 1519 layers represents ideal lattice with fair accuracy

BPM, : (x4, Y,) BPM 346 (X1518, Y1518) T
T T TensorFlow

= 2,3 km length with 1519 magnets Xo—) L. X
. : Yo— — Y

= 210 horizontal and 194 vertical correctors XE% M, M, | - Mod %
= 246 beam position monitors Yo~ — — — Yy
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Length, m
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One-short learning of PETRAIIl in experiments

Beam threading e 1st jteration .
_ oo |H ~no beam i |
- E o 'uwln.“.m\ ek,
1. All corrector magnets are switched off ool JYVAU LA
2. Beam is able to travel through only a part of the ring -0.02 b - -
3. Neural Network predicts an optimal control policy for beam propagation 3rd iteration
= S corrected beam ! no beam
ERT 1HFM'M.M“-WkW~WMAnx/JE et A,
Tune recovering ; % o W
ength {m

1. Tune is the main multi-turn frequency of beam oscillation in the storage ring
2. The affected magnets cause the tune change from the designed values.
3. Neural Network is trained with only a single-turn_ measurement and estimates tunes with 95% accuracy.
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To handle problem of limited observations we implemented
special regularization methods

Regularization aims to reduce the number of free parameters (weights) of the NN to ovoid overfitting. The traditional methods
(L1-L2 norms) do not reflect physics and just try to reduce the absolute magnitude of the weights during training.

Symplectic regularization

For Hamiltonian systems representing single-particle beam dynamics, the symplectic property can be used. The
Hamiltonian structure of each layer is preserved for all new inputs which has a large impact on generalization.
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QUBO-based regularization (quadratic unconstrained binary optimization)

Since physical systems that are described by ODEs often lead to sparse weights, this should be preserved during training:

_ (10099 -7.64E-06 0 . fit wei - i
w, = (@1.000 _1‘54E_04|£) . | Problem: fit weights with data and maximize
QUBO problem number of zero elements
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with Quantum Annealers
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Results

01

02

03

04

Novel architecture of deep NN incorporating physical knowledge from ODEs

Deep NN without training simulates the dynamics and a possibility to fine-tune the weights on limited experimental data. This is in sharp
contrast with most of the existing works on learning of dynamical systems, where complex neural architectures are trained on large datasets

New regularization methods are suggested

symplectic regularization - restriction to Hamiltonian systems =  easy to implement

QUBO-based regularizaton > general purpose - combinatorial optimization (Quantum Annealers)
The NN is validated on both simulation of PETRAIV and experiments in PETRAIII

The proposed NN allows fine-tuning with single trajectory (one-short learning) of noisy measurements.

Beyond accelerator physics
4 P ECAlx:o S
Since ODEs and\or PDEs generally arise in physical problems, the proposed NN _ physics
. ) X ] . . oral presentation at the _ .
may be helpful for solving and speeding up real physical problems in various domains. European Conference Paper in Physical
on Artificial Intelligence Review AB
(Accepted) (Under Review)
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Thank you

Contact
DESY. Deutsches Andrei lvanov
Elektronen-Synchrotron andrei.ivanov@desy.de

www.desy.de



