

SAM BEIN, PETER SCHLEPER, ALEXANDRA TEWS, MORITZ WOLF

Event selection:

- Trigger: HLT_PFMET120_PFMHT120_v*
- MET > 250 GeV
- ≥ 1 jet with p_T > 100 GeV
- Δ phi(MET, jet_{1,2,3,4}) > 0.5
- m_T(MET, jet₁) > 300 GeV
- Veto on leptons, b-jets, isolated photons
- + Require soft and displaced track (tagged with **BDT**)

Background processes:

- Z(inv) ≈ 60%
- W+Jets ≈ 30%

Baseline monojet selection

DEFINITION OF SIGNAL REGIONS

- Evaluation of S/sqrt(B + dB_{syst}²) dB_{syst}² = dB_{closure,syst}² + dB_{closure,stat}² for different cuts
- $dB_{closure,syst} = 0.1 * B (constant)$
- dB_{closure,stat} from uncertainty in closure test for Z(inv) in SR

(depends on SR cut)

- B: cleaned DY data
- MC Z(inv) and Wjets plotted for reference
- > SR cut dM = 0.3: **0.44**
- > SR cut dM = 1.0: **0.43**

DEFINITION OF CONTROL REGION FOR DM = 0.3

- Evaluate for different definitions of control region (x-axis: lower bound, y-axis: upper bound)
 - upper plot: abs(1 [Z(inv) MC event yield in SR / prediction from cleaned DY MC]) ("goodness" of CR)
 - lower plot: signal (m = 100 GeV) event yield in CR / MET data event yield in CR (signal contamination)
- Background prediction gets better for CR closer to SR (as expected)
- Stay below 3% signal contamination (high cross-section signal model point chosen)
- ➤ Choose CR from 0.3 to 0.4

DEFINITION OF CONTROL REGION FOR DM = 1.0

- Evaluate for different definitions of control region (x-axis: lower bound, y-axis: upper bound)
 - upper plot: abs(1 [Z(inv) MC event yield in SR / prediction from cleaned DY MC]) ("goodness" of CR)
 - lower plot: signal (m = 100 GeV) event yield in CR / MET data event yield in CR (signal contamination)
- Background prediction gets better for CR closer to
 SR (as expected)
- Stay below 3% signal contamination (high cross-section signal model point chosen)
- > Choose CR from 0.25 to 0.35

SIGNAL AND CONTROL REGIONS

- SRs and CRs in 2D
- Gray/blue: distribution for Z(inv)

BACKGROUND ESTIMATION METHOD FOR Z(INV)+WJETS

- Z(inv) and W+Jets combined
- Define systematic uncertainty associated to background estimation method for each dM as max(deviation from 1, statistical uncertainty):
 - > dM=0.3: **30**%
 - dM=1.0: 38%

CLOSURE IN MAX BDT SCORE FOR DATA

- Blinded in SR
- Only statistical uncertainty shown for cleaned DY sample

BACKUP

CLOSURE IN MAX BDT SCORE FOR Z(INV) MC

Private Work

CR

0.5

Underprediction trend towards lower values (due to lepton acceptance in Z(II) sample depending on lepton-pT)

CLOSURE IN MAX BDT SCORE FOR WJETS MC

- General downward slope in ratio due to softer MET spectrum for W+Jets
- Enhanced tail due toW → tau decays

CLOSURE IN MAX BDT SCORE FOR Z(INV)+WJETS MC, DM=0.3

CLOSURE IN MAX BDT SCORE FOR Z(INV)+WJETS MC, DM=1.0

CLOSURE IN MAX BDT SCORE FOR DATA W/ LEPTON

- Control sample: MET data with exactly one "good" lepton
 - p_T > 10 GeV
 - Iso < 0.02 (dR<0.2)

SIGNAL SAMPLES WITH GEN. INFO

- signal model points with m = 115 GeV, top to bottom: ascending gen. dM
- left: BDT evaluated for dM=0.3

right: dM=1.0

- red: chargino pion track
- orange: neutralino tracks

gen. dM = 0.17

gen. dM = 0.27

gen. dM = 0.57

gen. dM = 0.97

BACKGROUND SAMPLES WITH GEN. INFO

- Z(inv) sample
- Track-level BDT output not event-level quantity
- left: dM=0.3, right: dM=1.0

CTAU VS. DM

higgsino μ =100, M1=M2

TRIGGER EFFICIENCY

