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Globale Greenhouse Gas Emissions on the Rise

Dis-entangling w.r.t. country groups
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Carbon Dioxide Impact Cascade

(a First Order Approximation)

Larger & more frequent impacts of global warming

Y

Increase of global mean temperature
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Greenhouse Gas Concentration T "°
of the last 400 000 years

Vostok Ice Core:
the record of the last 420,000 years
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Time Evolution of Atmospheric
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Human influence has been detected in warming of the atmosphere and the ocean, in changes
in the global water cycle, in reductions in snow and ice, in global mean sea level rise, and
in changes in some climate extremes (see Figure SPM.6 and Table SPM.1). This evidence for
human influence has grown since ARA4. It is extremely likely that human influence has been
the dominant cause of the observed warming since the mid-20th century. {10.3-10.6, 10.9}

‘extremely likely’ := significance level = 95%

IPCC AR5 WG-I SPM (2013)
IPCC Uncertainty guidance notes (2010)



Interpretation

Spatio-temporal response patterns, induced by competing
drivers
— CO, and other greenhouse gases (anthrop.)
— SO, (anthrop.)
— Ozone (anthrop.)
— Natural sources
are determined.
Climate’s covariance properties are determined.

The observed warming signal is linearly regressed to those
patterns.

Confidence ellipsoids in pattern scaling coefficient space are
derived from an F - statistic.

95% refer to the significance with which the null hypothesis,
global warming is a natural phenomenon, is rejected.



A Remark on Climate Models

Based on hydrodynamics

Require additional assumptions in order to parameterize
unresolved sub-scale processes.

State-of-the-art coupled atmosphere-ocean general
circulation models: 108 ... 10° ordinary differential equations



Future Temperature Rise:
Maneuvering Space and Uncertainty

Global average surface temperature change
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Why Might Society Care About Global Warming?

Some of the Projected Consequences

Fgrest Fires in Southern Europe
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Two Lines of Argument Behind
Global Warming Mitigation Policies

Evaluation of Precautionary
explicitly projected principle:
Impacts of global beyond certain
warming regimes knowledge
(‘facts-based too poor to weigh

approach’) costs and benefits

13



One Possible Interpretation of the
Precautionary Principle:
Avoid Historic Dimension of Temperature Rise

(‘Hot House’
~ 2 2Million

Global average surface temperature change
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| 2000 - 2050 ”" s100 (Standard climate
Last Ice Age of the past 10 000 years)
(until ~10 000 years)
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Two Sides of the Precautionary Argument

« Signaling the prospect of stability: What are we used
to?
— Maximum excursion to the high-end during development of
humankind: 1.5° C.

— 2° (C)-target a derivative of this by two ingredients:
« Assumed adaptation abilities
* The desire for a ‘simplest-possible’ number.

« Signaling the potential of threat: what are we not
used to?

— No policy scenario: would drives us into a temperature
regime unknown since 2M years.

Otto et al., subm.



The 2°-Target as an Amalgam of
Precautionary and further Inputs

Represents an operationalization of the precautionary
principle

Acknowledges known impacts

Condenses information for political discourse
(‘academically informed political target’)

— Analogous to a speed limit

— Does not indicate a phase transition or bifurcation of
the climate system at 2 ° .



Paris Agreement 2015
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Article 2

1, This Agreement, in enhancing the implementation of the Convention,
including its objective, aims to strengthen the global response to the threat of
climate change, in the context of sustainable development and efforts to eradicate
poverty, including by:

(a) Holding the increase in the global average temperature to well below
2°C above pre-industrial levels and pursuing efforts to limit the temperature
increase to 1.5°C above pre-industrial levels, recognizing that this would
significantly reduce the risks and impacts of climate change;



Facing Global Warming:
Two Possible Climate Policies

Mitigation

Emissions

Socio-Economic System Climate System

Temperature
Impacts

Adaptation
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Speculative: Geo-Engineering Options
(intentional large-scale operations to
counteract environmental impacts, after D. Keith)
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Two Prominent Schools within Climate Economics

= Economic impact function - Cost benefit analysis
= List explicitly known effects of global warming and mitigation costs

= Determine economic optimum - optimal degree of global
warming

Present-day :  Future
mitigation costs y v avoided damages

= Target-based ~ precaution-based decision making

= Determine constrained welfare optimum for complying with a
temperature

= Target set by: ‘What has humankind survived during its
development?’



An Interdisciplinary Optimisation Problem
Max! Welfare
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An Interdisciplinary Optimisation Problem

Climate MPF SRS Max! Welfare = J U(C) e Ptt=t) dt

Energy
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An Interdisciplinary Optimisation Problem

Climate TS SRS . Max! Welfare = J U(C) e Ptt=t) dt

.................
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Earth System Modelling:

The Fundamental Assumption of

Time-Scale Separation

Atmosphere / |Biosphere |Economic
Ocean Dynamics Dynamics
Dynamics
Short-Term | Weather Ecosystem | Prices at
behaviour Stock market
Long-Term | Climate Carbon Patterns of
(~10..100 Cycle economic
yrs) growth
statistical

moments
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Economic Backing of 2° (C) target?
(How much mitigation is desirable?)

« Cost Benefit Analysis (CBA):
The standard tool of environmental economics

Present-day ;Futg(;ed d
mitigation costs avolded damages

25



A Generic CBA Result

‘Optimal Path’:
~ 3.5°C warming
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Figure 5-8. Projected global mean temperature change under different policies. Increases

are relative to the 1900 average.

W. Nordhaus: ‘A question of balance’ (2008)

(Recipient of the Nobel Prize in Economics - 2018)
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Conceptual Difficulties for CBA

« Climate impacts are poorly known

— Limited natural science/engineering knowledge (at least
today)

— Need for valuation of goods

* Need to weigh
— Present mitigation costs ... against ...
— Future avoided damages

Results in vastly diverging policy recommendations:

For e.g. Emissions control rate
« ~25% in 2050 (3-3.5° C warming; Nordhaus, 2008)
* 100% immediately (Weitzman, 2009)

27



Carbon Dioxide Impact Cascade:
Avoid the Damage Part

Avoid this hard to quantify part of analysis!

Increase of global mean temperature

Increase of CO, concentration in the atmosphere

CO, emissions

28




Cost Effectiveness Analysis (CEA)

An easier & better-posed decision-theoretical framework?

« Avoids talking about the hard to quantify damages

* Instead:
— Assumes an environmental target (e.g. 2° (C) target)

— Strives for a cost-minimal mix of energy investments
to achieve this target.

 ‘Lexicographic preference order’

29



Costs of Climate Targets
The standard model setup

Ramsey—type
Macroeconomic
Growth Model

Costs of various o
CO, emissions

In compliance with
environmental target?

A

| Carbon Cycle (+Climate)

energy systems;

_ from fossil sector
learning curves

Module

Based on MIND by Edenhofer et al. (2005)
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Box: A List of Assumptions

31



Mitigation Options Considered In
Cost Effectiveness Analyses

Enhancing Energy Efficiency
Renewable Sources

Carbon Capture & ‘Storage’
Nuclear Energy (Fission)

Several dozens of energy technologies resolved
In state-of-the-art models.

32



Carbon Capture & Storage

STORING CARBON DIOXIDE
ROUND AND IN THE OCEAN

CARBON DIOXIDE
PUMPING STATION

=" /  PIPELINES
UNMINABLE
COAL BEDS

DEPLETED OIL OR
GAS RESERVOIRS

DROPLET PLUME &




Nuclear

...as economic numbers on fusion still too
uncertain

34



Wind power project cost in the USA in USD,, /W
Global average PV module price in USD, /W

Learning Curves Included
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A Desirable Property of the
Welfare Flgonctional

Max! Welfare = j U(C) e Pt=t) d¢

Time-inconsistent

Time-consistent

>
t t, t

This prescription is ‘time-consistent’:

Let {c*(t)} a control path that optimizes above welfare W ([t,,0[).

Let t,<t,.
Then {c*} also optimizes W([t,,o0[). 26



Anticipated Time—Inconsistency:

Odysseus & the Sirens

http://vampirella91.de.tl/Drachen-und-Sirenen.htm

37



* Exponential discounting is both
necessary and sufficient for time-
consistent decision-making (if assuming
time-additive welfare; Strotz, 1955).

* Time consistency conserves the optimal
path under time-shift of decision
moment.

38



End of Box on the
List of Assumptions

39



1200 Scenarios classified by IPCC AR5 WGl

Table SPM.1 | Key characteristics of the scenarios collected and assessed for WGIII ARS. For all parameters, the 10th to 90th percentile of the scenarios is shown.™? [Table 6.3]

CO,eq Cumulative CO, Change in CO,eq emissions . =
Concentrations emissions® (GtCO,) compared to 2010 in (%)* Temperature change (relative to 1850-1900)
e c Re‘laltwe Likelihood of staying below temperature

Subcategories position of 2100 level over the 21st century®
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Mitigation requires major technological changes including the

upscaling of low- and zero carbon energy.

74
6

5

Temperature Increase [°C]

IPCC AR5 WGIII, Figure SPM.4. 2
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Figure T5.12| Global carbon prices (left panel) and consumption losses (right panel) over time in cost-effective, idealized implementation scenarios. Consumption losses are
expressed as the percentage reduction from consumption in the baseline. The number of scenarios included in the boxplots is indicated at the bottom of the panels. The 2030 num-
bers also apply to 2020 and 2050. The number of scenarios outside the figure range is noted at the top. Note: The figure shows only scenarios that reported consumption losses (a

subset of models with full coverage of the economy) or carbon prices, respectively, to 2050 or 2100. Multiple scenarios from the same model with similar characteristics are only
represented by a single scenario in the sample. [Figure 6.21]



Carbon Prices 2020-2100
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Figure T5.12| Global carbon prices (left panel) and consumption losses (right panel) over time in cost-effective, idealized implementation scenarios. Consumption losses are
expressed as the percentage reduction from consumption in the baseline. The number of scenarios included in the boxplots is indicated at the bottom of the panels. The 2030 num-
bers also apply to 2020 and 2050. The number of scenarios outside the figure range is noted at the top. Note: The figure shows only scenarios that reported consumption losses (a
subset of models with full coverage of the economy) or carbon prices, respectively, to 2050 or 2100. Multiple scenarios from the same model with similar characteristics are only
represented by a single scenario in the sample. [Figure 6.21]
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2°-Compatible Emissions-Reductions Require
Shifts in Investments 2010-2029

*|Electricity
Renewables
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stabilize concentrations within the range of
approximately 430-530 ppm CO2eq by 2100

IPCC AR5 WGlII, Figure SPM.9.



Economic Welfare Effects of 450ppmeq
(~2° C) Target?

Economic reference case:
Scenario without climate damages and without climate policy
This is characterized by global economic growth of 1.6 - 3 % / year.

2°-oriented scenarios compatible with continued global economic
growth.

Annual growth rate reduced by 0.06 %- points .
Hereby avoided warming-induced net damages not yet included.

(After IPCC AR5 WGIII SPM)

2° target ‘~insurance premium against unpredictable warming
damages’



How Do the Numbers Change for
the 1.5° Target?
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Temperature, Impacts, Mitigation Costs

Additional Damages Consumption

(Selection) Loss in 2030
1.5°C +3° of hottest days 3.8%*
2°C 8% — 16% Plant species loss; 1.7%

corals; run-away greenhouse effect?*
Ice sheets at risk
+>100 millionen poor affected. (2050)

3°C 10% GDP-loss** 0.3%

4°C Sure loss of the Greenland ice sheet ->
+7m sea level

IPCC AR5 WGII SPM & 1,5° (2018) IPCC AR5 WGIII SPM
*Steffen et al., 2018 *Extrapolated from

**Dietz et al., 2018 Rogelj et al., 2015



Inclusion of Uncertainty:
Only a Book-Keeping Exercise?

« So far, uncertainty has silently been
encapsulated in the request that temperature
targets are complied with, prescribing a
probability of 66%.

 However, from economics we know that in a
dynamic setting, target-based decision-making
IS at odds with anticipated future learning.



Distributions on Climate Sensitivity

— Aot 01 IPCC AR5 WGI (2013)
12F Bender et al. (2010) -
' = | ewis (2013)
] I\ = | in et al. (2010)
08 F = | indzen & Choi (2011)
' J PR === Murphy et al. (2009)
1 \ — gtlsun etal (2012)
B g — Otto et al. (2013) i
0.4 g .\ . = Schwartz (2012)
w e = Tomassini et al. (2007)

« An upper bound for allowed carbon budget scales with
(2T7CS- 1) (Kriegler & Bruckner, 2004)

* Hence, as there is no upper bound on CS, no temperature
target can be complied with under P*=100%!

* Therefore we can only formulate temperature targets in
conjunction with a compliance prob. target P* <100% !

— Weaker, probabillistic target P (T<T*) >! P*



Chance Constraint Programming
Presently Leading Paradigm

Cost effectiveness analysis (CEA) under probabillistic target:

‘Chance Constraint Programming’

(Charnes & Cooper, 1959)

~1000 deterministic CEAs as assembled in IPCC AR5 have
potential to be seen as good approximations of chance constraint

programming solutions

— On the mechanism: see Held et al., 2009.



Conceptual Flaws of
Cost Effectiveness Analysis even for
Probabilistic Targets

Probabillistic target might become infeasible (due to stock-
pollutant dynamics) if...

« ...in the future we learn with certainty that climate
sensitivity is ‘too large’, or...

e ...an implementation of a global mitigation strategy is
delayed too much (‘delayed participation’).

Furthermore, the expected value of information on climate
sensitivity can be negative (Schmidt et al., 2011).

— An effect known in principle since Blau, 1974.



Hence we suggest a hybrid approach

Cost Benefit Analysis

(),

Mathematical
framework

Cost Effectiveness Analysis

Target-based
calibration

Cost Risk Analysis

Schmidt et al., 201
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“Cost Risk Analysis” (CRA):
A hybrid decision analytic tool

Degree years

Temperature

Time

Present-day E?isk of trespassing
mitigation costs’ " temperature limit



“Cost Risk Analysis”

Welfare Equation 8: time preference
s: state of the world

t: time

x: control
Risk from

Trespassing

Maximize! S ,_l_‘
Welfare W = Z Z ps[U(C(t,5,x)) — BR(T(t,s,x))] e %

t s=1 : \
Utility from

_ Trade-off parameter
consumption

(needs to be calibrated)

* Discount factor being
outside of the bracket
ensures time consistency.



“Cost Risk Analysis”

Welfare Equation 8: time preference
s: state of the world

t: time

x: control
Risk from

Trespassing

Maximize! S ,_l_‘
Welfare W = Z Z ps[U(C(t,5,x)) — BR(T(t,s,x))] e %
t s=1 I 1 \

Utility from

_ Trade-off parameter
consumption

(needs to be calibrated)
Problems:

® How to choose R(T)? (risk metric)

® How to choose [7? (trade-off parameter)



Calibration

UNFCCC COP17 Decision 1 (excerpt):

P —

,[..] emission pathways consistent with Having a 1

—

likely chance of holding the increase [..] below
@ Corl5CI[.]

Likely = at least | | No discussion of
66% probability future learning

Set 3 so 2°C with 66% is reached (no learning)

“Extract the value system of the COP / 2° community.”

Neubersch, Held, Otto, 2014
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Axiomatic Basis of a Linear Risk Function:
Most Conservative Function that Avoids “Holocene Sacrifice”

The Risk Metric (a) Risk: Theshold -
6
Penalty M Perfect learning 2015~
g .
/ ) ¢ | Climate
______ E g e .
1 > 23 g | Sensitivity
v 2
22 E
N é 1 -
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2°C N, anomaly 00 2050 2100 2150 LV
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\46
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>
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v
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£
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0
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* Axiom of “Holocene sacrifice inhibition”.
= Multiple optima of welfare must be avoided for any mitigation cost function.
= The risk function must be at least linearly convex...
...to preserve convexity of welfare for any convex mitigation cost structure.
* i.e. ‘veil of ignorance-approach regarding mitigation costs to infer risk function’ >’



e Learning that climate sensitivity is larger than expected
is equivalent to emitting more than optimal.

Aw

Axiom of Sacrifice Inhibition 5

Imagine society, in a static setting, regards a budget of emissions E* for the
world as welfare optimal. If, for some reason, new information arrives that
this budget cannot be met because an amount of dE emissions has or will
be emitted too much, then the optimal budget goal should be

E**=E*+dE

and not any larger value.

This is prevented if welfare equation is convex, then there cannot be any jumps

in optimal solution. Neubersch, Held, Otto, 2014
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Findings from Cost Risk Analysis for
Immediate Action

~1000 mitigation scenarios assembled in IPCC AR5
mainly based on CEA.

— However MIND-based results indicate fair chances
CEA control paths can be re-interpreted as good
approximations of CRA-based results.

Then they represent upper limits of mitigation costs
due to lack of learning.

Infeasibilities of lexicographic preferences avoided.

The expected value of perfect climate information
could be on the order of hundreds of billions € / year
undera 2° target

— (on average 1/3 of mitigation costs saved).

(Neubersch, Held, Otto, Climatic Change, 2014)



Joint Mitigation & Solar Radiation
Management (SRM) Assessment

e
Sbsosoners

g

! 22 S

B B stz
Grow frees

-

Assuming compliance with the 2° target:
How would the optimal portfolio of mitigation options change
If we added sulphur aerosol injection to the portfolio ?

 Include regional climate mismatch in the analysis

« SRM destroys global mean temperature as a good indicator
for regional climate

« — Model regional climate explicitly

* Regional targets induced by 2° target:

— ‘What regional climate would a 2°-proponent have accepted before
the advent of SRM?’ (Stankoweit et al., 2015)



Inclusion of SRM: CEA vs CRA
- CEA CRA

Costs only Mitigation crowded Mitigation crowded
out out

Regional targets SRM approximately SRM significant
activated prohibited
(all other SRM-risks

ignored)

Costs: Costs:
Mitigation only - " SkM
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Summary on Cost Risk Analysis

Currently, both cost benefit and cost effectiveness
analysis are structurally unstable against climate(impact)-
uncertainty.

Cost risk analysis, as a hybrid of both, approximately and
tentatively reconfirms CEA-based results for {immediate
action and w/o climate engineering}.

CRA allows for specifying an expected value of
iInformation for reducing climate response uncertainty.

— ~ 1/3 of expected mitigation costs could be saved.

CRA would recommend qualitatively
— less mitigation under delayed action and
— more solar radiation management (regional climate risk only)

than CEA would do.



A Persistent Discrepancy Between the
2° Target and Emission Reduction Action

« The Paris agreement formulated the 2° target as a
legally binding target.

« However, current policies point towards 3° C
warming (Climate Action Tracker, 2020).

* Alist of hypotheses why this is the case...:



Frictions & Instruments

Free rider problem Coalition formation & border tax
adjustments

Lobbying of owners of fossil Resolution of information

resources asymmetries

Impacts on diverse income Targeted distributional policies

groups

Side effects of mitigation options Metrics of sustainability also for
technology options

Uncertainty about outcomes of Decision-making under
policy interventions uncertainty-based approaches



Frictions & Instruments

Resignation in civil society Communicate climate problem in
combination with solution options

Academic scepticism about Generate a precaution-based

climate targets as a valid concept theoretical approach for decision-
making

Abstractness of temperature Communicate pros & cons of

targets various temperature levels



Expectation: CLICCS Will Shed Light on
the Underlying Mechanisms

Photo: J.Marotzke/M.Béttinger

e Cluster of Excellence Climate, Climatic Change,
and Society (CLICCS)

e Balanced contribution from natural science
and social science



Summarv

The 2°-target was derived from considerations of precaution,
oriented at natural variability.

In case of complete ignorance of avoided damages, the 2°
target would induce a reduction of the centennial growth rate
[in 1/yr] of 0.06% points.

The underlying decision-analytic framework could be
generalized to a dynamically consistent interpretation which
retroactively confirms above numbers for the limiting case of
Immediate implementation of a mitigation policy.

The integration of natural and social climate science will be
key in order to explain the persistent discrepancy of climate
targets and action.



