

PAUL SCHERRER INSTITUT



Sairos Safai :: Medical Physicist :: Paul Scherrer Institut, Villigen, Switzerland FLASH radiotherapy

Workshop ACHIP, 23<sup>rd</sup> June 2020



### 1. My area of expertise

- Radiation therapy, more specifically proton therapy
- Interests: dosimetry, beam modelling, beam delivery and more recently FLASH with protons









### 2. Short recap of the main points of 2018 presentation

- Cheap and reliable radiotherapy machine
- A case for intraoperative radiation therapy?

### 3. FLASH radiotherapy with electrons

- Basics
- Specifications



World-wide distribution of RT machines (as of 30 Jan 2017)





Production of photons from laser accelerated e

### The concept of a possible realization



What power and electron current is needed to reach a certain dose rate?



## Classical RF linac for radiation therapy



Charged particle current density  $I_{e,avg}/A$  for e<sup>-</sup> treatments: 10<sup>-2</sup> nA/cm<sup>2</sup> for 1 Gy/min



https://www.cancercenter.com/treatments/intraoperative-radiation-therapy/



With electrons: 3 ... 12 MeV Dose rate: 20 Gy/min With low energy X-rays: max 50 kV

 $I_e: 10^{-9} \dots 10^{-8} A$  (field size 10 cm<sup>2</sup> ... 100cm<sup>2</sup>; factor 10'000 ... 1'000 less than by a conventional linac with  $\gamma$ ) Power in the electron beam: as low as 10mW (10 MeV at 10<sup>-9</sup> A)



## Intraoperative radiation therapy (IORT)



With electrons: 3 ... 12 MeV Dose rate: 20 Gy/min





With low energy X-rays: max 50 kV

Power in the electron beam: ~10mW

I<sub>e</sub>: 10<sup>-9</sup> ... 10<sup>-8</sup> A

The next frontier Accelerator on-a-chip at the tip of an endoscope, or similar



PAUL SCHERRER INSTITUT

# The FLASH effect: a new emerging research area

### **Observation:**

Major decrease of radiation induced side effects when dose delivered at extremely high dose rates with electron beams



> 30 Gy/s (average)> 70'000 Gy/s per pulse

Observed with e- beams



VET CLINICAL TRIAL Cat patients Low toxicity Good tumor control Vozenin et al. 2018



<u>Mini pig</u> Low toxicity Vozenin et al. 2018



## Dose rate considerations for FLASH

- Dose rates requirements for FLASH with electron beams are still being revised
- The time structure of beam delivery could be key for FLASH effects
- The dose rate per pulse may be the relevant parameter rather than the average dose rate over multiple pulses

### Characteristic Linac at CHUV, Lausanne (Switzerland) used for FLASH

| FLASH*                |                                                | CONV*                   | * Oriatron eRT6 (M Jaccard <i>et al</i> |  |
|-----------------------|------------------------------------------------|-------------------------|-----------------------------------------|--|
| au (µs)               | 1.8                                            | 1.0                     | adapted                                 |  |
| <i>f</i> (Hz)         | 100 – 200                                      | 10                      |                                         |  |
| Ď <sub>m</sub> (Gy∕s) | 100 – 1'000                                    | 0.05                    |                                         |  |
| $\dot{D}_p$ (Gy/s)    | $5.5 \times 10^5 - 4.5 \times 10^6$            | 5 x 10 <sup>3</sup>     |                                         |  |
| l <sub>e,avg</sub>    | 6 x 10 <sup>-7</sup> – 6 x 10 <sup>-6</sup> A  | 3 x 10 <sup>-10</sup> A | (for small fields ~10cm <sup>2</sup> )  |  |
| l <sub>e,pk</sub>     | 3 x 10 <sup>-3</sup> – 3 x 10 <sup>-2</sup> A  | 3 x 10 <sup>-5</sup> A  | (for small fields ~10cm <sup>2</sup> )  |  |
|                       | $1.5 \times 10^4 - 1.5 \times 10^5 \mathrm{W}$ |                         |                                         |  |



## Wir schaffen Wissen – heute für morgen

