Robust statistics for "Bad pixel mask"

Using Robust Statistics and Machine Learning methods to help with data reduction in FEL data analysis pipeline

Alireza Sadri Hamburg, 08.06.2020

FEL Data volume challenge

• We need maybe thousands of good images...

Example: analog offsets

Abnormal behavior

Measures of pixels behavior

- Analog and Digital offsets in the dark
- Analog and digital variations in the dark
- Showing poissonian probability density behavior

- All of these measures will be reduced to normal and abnormal statistics
- That is outlier detection is used during finding normal ones
- Those that are separable from the normal are bad.

A Robust Gaussian Fitting library

Separability or
$$SNR = \frac{x_P - \mu_B}{\sigma_P + \sigma_B}$$

How data is made: RNN0 = 50 + 5*np.random.randn(30) RNN1 = 200*(np.random.rand(60)-0.5) testData = np.concatenate((RNN0, RNN1)) np.random.shuffle(testData)

How to use the current implementation

- The current implementation is for research and development
- It is basically a C file
 - And a Python3 "ctypes" wrapper
 - The entire library has three main parameters:
 - What is the secure highest portion of data inlier? Example: 50% is very safe
 - The normalized cutoff threshold for a Gaussian, e.g.: 3σ away from the mean
- Given a data vector with less than half outliers and a Gaussian

```
import RobustGaussianFittingLibrary as RGFLib
#Y = Mean + RSTD
RMean, RSTD = RGFLib.fitValue(data)
#Y = aX + RMean + RSTD
Ra, RMean, RSTD = RGFLib.fitLine(dataX, dataY)
#Z = aX + bY + RMean + RSTD
Ra, Rb, RMean, RSTD = RGFLib.fitPlane(dataX, dataY, dataZ)
```

• Default parameters are the examples above

More applications

Background estimation using RobustGausFitLib

DESY.

Background subtraction

Page 10

More accurate background estimation By shifting and averaging multiple estimates

DESY.

Overall (4.63 + 1% with T=6)

Memory cell 140

DESY.

Numerical results

- An experiment with Lysozyme
- In EuXFEL SPB with AGIPD 1M
 detector
- 5551744 images (3500 fps)
- Results for the effect of the mask on hit rate, indexing rate and partialator results (SNR, Rsplit and CC* vs shells resolutions) on the above dataset for Robust peak finder and peakfinder8 in CrystFEL.

- During the tests, the only thing that changes is the mask
 - border of ASICs in AGIPD are always masked.
- For both methods
 - Acceptable SNR > 6.0
 - Hit threshold: 20 Bragg peaks
- By tapping into EuXFEL proc files, a mask can be found, used here for a non-conclusive friendly comparison

Rates

Out of 5551744 images

- Robust peak finder:
 - border mask:
 - Hits: 5170409
 - Hit rate: 93%
 - Indexed images: 1109294
 - Indexing rate: 21.45%

- Proposed masked
 - Hits: 1374927
 - Hit rate: 25%
 - Indexed images: 884329
 - Indexing rate: 64.31%

- CrystFEL peakfinder8
 - border mask:
 - Hits: 1432622
 - Hit rate: 26%
 - Indexed images: 546705
 - Indexing rate: 38.16%

- Proposed masked
 - Hits: 567850
 - Hit rate: 10%
 - Indexed images: 427433
 - Indexing rate: 75.27%

Thank you

Contact

DESY. Deutsches Elektronen-Synchrotron Alireza Sadri CFEL-DESY E-mail Alireza.Sadr@desy.de

www.desy.de