LUXE Geometry update

O. Borysov

LUXE meeting DESY 11.06.2020

Interaction chamber front view

Interaction chamber side view

Interaction Chamber in GEANT4

- Without laser components;
- Spectrometer moved by 550 mm;
- Vacuum chambers for particle traveling from IP to detectors.

Simplified magnet model for FLUKA

Detailed

Simple

• 4 volumes including support

Simple, w/ vacuum chambers

Simple, w/o vacuum chambers

Single electron event, 15.0 GeV

- Field 1.7 T;
- Distance between the field and detector (surface to surface) 1.3 m;
- e- 15 GeV

Single electron event, 2.1 GeV

- Field 1.7 T;
- Distance between the field and detector (surface to surface) 1.3 m;
- e- 2.1 GeV

2.0 GeV hits the magnet a bit

6k electrons, 6.0 GeV

hhe_detx

BPPP spectra

OPPP for gamma 8, 10, 12, 14, 17 GeV and laser 3.5J and 1J (ξ: 4.87 and 2.6)

Trident

Magnet 3D CAD

Gap between coils

Magnet cross section (middle plane, top view)

3D CAD model is not aligned with coordinate planes...

Electron Tracks

Electron Tracks

Electron Tracks

Summary

- 2T at 1 m requires over 61 cm detector span to cover energy down to 1.5 GeV. Also everything below 2.2 GeV hits the magnet.
- Lower fields 1.4T 1.7T fit better, but require moving detector further form the magnet (1.2m-1.5m) and increase the aperture of the magnet by 2-3 cm assuming energy range 1.5 GeV-16 GeV.

Beam position after the magnet

 $R[Ee_] = \sqrt{Ee^2 - me^2} / (clight * B)$

$$\frac{\sqrt{\text{Ee}^2 - \text{me}^2}}{\text{B clight}}$$

$$S[Ee_] = R[Ee] - \sqrt{R[Ee]^2 - \text{zm}^2}$$

$$\frac{\sqrt{\text{Ee}^2 - \text{me}^2}}{\text{B clight}} - \sqrt{\frac{\text{Ee}^2 - \text{me}^2}{\text{B}^2 \text{ clight}^2} - \text{zm}^2}$$
sint [Ee_] = zm / R[Ee]

B clight zm

$$\sqrt{\text{Ee}^2 - \text{me}^2}$$

$$tgt[Ee_] = sint[Ee] / \sqrt{1 - sint[Ee]^2}$$

B clight zm

$$\sqrt{\text{Ee}^2 - \text{me}^2} \sqrt{1 - \frac{\text{B}^2 \text{ clight}^2 \text{ zm}^2}{\text{Ee}^2 - \text{me}^2}}$$

xd [$Ee_$] = S[Ee] + zd * tgt[Ee]

$$\frac{\sqrt{\operatorname{Ee}^{2} - \operatorname{me}^{2}}}{\operatorname{B \ clight}} - \sqrt{\frac{\operatorname{Ee}^{2} - \operatorname{me}^{2}}{\operatorname{B}^{2} \operatorname{clight}^{2}}} - \operatorname{zm}^{2}} + \frac{\operatorname{B \ clight} \operatorname{zd \ zm}}{\sqrt{\operatorname{Ee}^{2} - \operatorname{me}^{2}}} \sqrt{1 - \frac{\operatorname{B}^{2} \operatorname{clight}^{2} \operatorname{zm}^{2}}{\operatorname{Ee}^{2} - \operatorname{me}^{2}}}$$

$$x(E) = \frac{BC \ Z_{m}}{E} \left(\frac{Z_{m}}{2} + Z_{d}\right) + 1, \quad Z_{d} = Z_{d}(E)$$

$$\frac{dx(E)}{dE} = -D$$

$$2. \quad Z_{m} = Z_{m}(E)$$

