K. Floyd @ ZAF Meeting, 09.06.20

BLACK

MATTER

NNLO jets @ HERA

ZEUS-prel-19-001 H1prelim-19-041

NNLO QCD fits to HERA jets and extraction of $\alpha_{\rm s}$

Update

A. Cooper-Sarkar, K. Floyd

- Handronisation uncertainties to be treated half-correlated and half-uncorrelated in PDF fits
 - Preliminary:

 $\alpha_s(M_Z^2) = 0.1150 \pm 0.0008(\exp)^{+0.0002}_{-0.0005}(\text{model/parameterisation})$ $\pm 0.0006(\text{hadronisation}) \pm 0.0027(\text{scale})$.

In fact for preliminary hadronisation uncertainties treatment was inconsistent \rightarrow we need proper treatment for final results

BLACK

III Hadronisation uncertainty revisited

- REMINDER: previous result with additional low- $p_{\rm T}$ bins and still inconsistent treatment of hadronisation correction uncertainties:

 $\alpha_s(M_Z^2) = 0.1157 \pm 0.0008(\text{exp})$

- Uncertainties of hadronisation corrections half-hals treated as

 → nuisance parameters in fits (half/sqrt(2))
 → uncorrelated uncertainties (half/sqrt(2))
- In some older jet data hadronisation correction uncertainties look a bit unreliable
- "Prescription" after discussion within H1 and ZEUS editorial board:
 - New H1 data sets \rightarrow exact hadronisation uncertainites
 - ZEUS and old H1 data sets \rightarrow conservative 2% uncertainty for all Q^2 and $p_{_{\rm T}}$ bins

Full uncertainties \rightarrow still being finalised

Floyd @ ZAF Meeting, 09.06.20

BLACK

MATTER

 $\overline{\mathbf{x}}$

•

Uncertainties \rightarrow improvement in comparison to HERAPDF2.0 NNLO

- Improvement in total uncertainty
 - Very small improvement in experimental part expected

BLACK

 $\overline{\mathbf{N}}$

Floyd @

ZAF

Uncertainties \rightarrow improvement in comparison to HERAPDF2.0 NNLO

- Improvement in total uncertainties comes from model and parameterisation parts
 - Least important HF uncertainties (ranges of mc and mb masses)

BLACK

 $\overline{\mathbf{x}}$

Floyd @

"Scale uncertainty" for gluon PDF → we were asked to investigate this

The 9-point scale variations, 7-point does not consider the red ones

μR	μF=0.5	μF=1.0	μF=2.0
µR =0.5	1646.3	1645.3	1645.44
µR =1.0	1595.9	1594.9	1595.2
µR =2.0	1606.9	1602.4	1601.2

Central fit is in the centre(!) All fits with μ R varied down have poor chisq μ F barely makes a difference, μ R is what matters This is all for $\alpha_{s}(M_{z})$ =0.1155

This is not the favoured value of $\alpha_{\rm S}(M_Z)$ for the other scale choices. Their Chisq decreases for their own favoured values ~0.112/0.119 – but by only ~5 to10 points—the chisq for μ R =0.5 is still BAD. **BLACK**

LIVES

BLACK LIVES

MATTER

 $\overline{\mathbf{N}}$

Floyd @

ZAF

Meeting, 09.06.20

10 0

 $Q^2 = 10 \text{ GeV}^2$ 4 scale

Scale uncertainty drawn for gluon PDF as envelope (in green)

- Very small effect, invisible for hight scales
- Authors don't think they want scale uncertainty like this presented in the paper \rightarrow consulting theorists, T. Gehrmann agrees with authors

BLACK LIVES "Scale uncertainty" effect on gluon PDF MATTER $\overline{\mathbf{x}}$ Floyd @ ZAF Meeting, 09.06.20 HERAPDF2.0Jets NNLO, $\alpha_s = 0.116$ 0.9 uncertainties: $\mu_{f}^{2} = 10 \text{ GeV}^{2}$ experimental model 0.8 parametrisation xg(x,Q²) 0.7 $Q^2 = 10 \text{ GeV}^2$ xu_v 14 JETS, as=0.1155, exp+scale 0.6 12 10 0.5 xd_v 0.4 xg (× 0.05) 8 NNLO jets 0.3 0.2 xS (× 0.05) **(**2) 0.1 HERA

0

 10^{-4}

10⁻³

10⁻²

10⁻¹

1

Х

0

10-4

10⁻³

10⁻²

10⁻¹

13

1

х

BLACK

Thank you for your attention :)