Acceptance corrections and first results of collectivity analysis in PHP

Dhevan Gangadharan June 9th 2020 Azimuthal correlations to probe collective behavior

Reminder of how 2- and 4-particle azimuthal correlations are defined.

2-particle azimuthal correlations

$$c_n\{2\} = \left\langle \cos\left(n(\varphi_1 - \varphi_2)\right) \right\rangle$$
harmonic Azimuthal angle particle 1 Azimuthal angle particle 2

<u>4-particle azimuthal correlations (more robust probe of collectivity)</u>

Borghini, Dinh, Ollitrault PRC 64 054901

$$c_n\{4\} = \left\langle \cos\left(n(\varphi_1 + \varphi_2 - \varphi_3 - \varphi_4)\right)\right\rangle - 2\left\langle \cos\left(n(\varphi_1 - \varphi_3)\right)\right\rangle \left\langle \cos\left(n(\varphi_2 - \varphi_4)\right)\right\rangle$$

Explicit removal of 2-body "non-collecitve" bkg correlations

- Studied only briefly in the DIS analysis.
- Requires more statistics at high multiplicity, which PHP should provide.

Expectations of 2-particle cumulants, c_n {2}, from heavy-ion collisions

The azimuthal component of particle production in "collective" heavy-ion collisions is typically parametrized with a Fourier decomposition:

$$\frac{dN}{d\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos n(\varphi - \Psi_n)$$

"Flow" coefficients

Parity-odd terms vanish

3

$$v_n = \langle \cos n(\varphi - \Psi_n) \rangle$$
 $\langle \sin n(\varphi - \Psi_n) \rangle = 0$

Assuming that particles within any given pair are only correlated with each other through a common symmetry plane with angle Ψ_n , and also assuming no event-by-event fluctuations of v_n , we have:

$$c_{n}\{2\} = \langle \cos n(\varphi_{1} - \varphi_{2}) \rangle$$

= $\langle \cos n((\varphi_{1} - \Psi_{n}) - (\varphi_{2} - \Psi_{n})) \rangle$
= $\langle \cos n(\varphi_{1} - \Psi_{n}) \rangle \langle \cos n(\varphi_{2} - \Psi_{n}) \rangle$
= v_{n}^{2}

Expectations of 4-particle cumulants, c_n {4}, from heavy-ion collisions

Assuming again the same things from the previous slide we can rewrite c_n {4} as follows:

$$c_n\{4\} = \langle \cos n(\varphi_1 + \varphi_2 - \varphi_3 - \varphi_4) \rangle - 2 \langle \cos n(\varphi_1 - \varphi_3) \rangle \langle \cos n(\varphi_2 - \varphi_4) \rangle$$

= $v_n^4 - 2v_n^2 v_n^2$
= $-v_n^4$

The 4-particle cumulant is thus **negative** when collective correlations dominate.

However, in small systems like e+p and p+p, event-by-event fluctuations of v_n may be substantial and distort this simple picture given above. A theoretical calculation is needed to estimate such distortions.

Noncollective 2-particle contributions are explicitly subtracted off. The cumulant is more robust against background contributions.

Expectations of 4-particle cumulants, c_n {4}, from heavy-ion collisions

 c_{2} {4} in Pb+Pb and p+Pb are clearly negative for multiplicities larger than 50.

In p+p it is not so clearly negative but by selecting events with a minimum number of higher pT particles ("EvSel_N_{ch}"), c_2 {4} becomes negative at high multiplicity.

In small systems it may be that even-by-event fluctuations of v_n distort the simple picture we gave you on the previous slide.

$$\mathbf{c}_n\{4\} \stackrel{?}{=} -v_n^4$$

Offline PHP event selection and multiplicity definitions

PHP offline event selection

- Primary Vertex QA (same as in DIS paper)
- <u>Sinistra probability < 0.95</u>
- Electron energy < 20 GeV
- E Pz < 65 GeV

N_{rec}

The number of reconstructed tracks passing the below criteria:

- ZTT track type
- >= 1 MVD hit
- DCAxy < 2 cm, DCAz < 2 cm
- 0.1 < pT < 5.0 GeV
- -1.5 < eta < 2

N_{ch}^{gen}

The number of long-lived primary charged hadrons with mean proper lifetime tau > 1cm, which were produced directly or from the decay of a particle with tau < 1cm.

$$N_{ch}^{rec} = \sum_{i}^{N_{rec}} w_i$$

where w_i is the single-particle efficiency correction factor

Reminder of HFL TLT descriptions

HFL TLT web page

TLT	Short description	Long description
HFL 1	Charmed hadrons in PHP	Or of all HFM triggers with hard cuts: pT thresholds and invariant mass thresholds of decay daughters.
HFL 2	Charmed hadrons in DIS	DIS electron Or of all HFM triggers with loose cuts:
HFL 5	inclusive dijets (similar to old HPP 14)	Two jets ET>4.5, eta<2.5 (EUCELL) Pz/E < 0.95 and E-Pz<100
HFL 6	jets in DIS	Two Jets ET>3.5, eta<2.5 (EUCELL) Pz/E < 1.0 and E-Pz<100
HFL 9	electron in PHP	Number of tracks > 2, Island Energy < 1000 Momentum track > 0 , pt of the track > 1.4 GeV , 0.6 < track theta < 2.55 , DCA < 30. EMC Island energy Fraction eEMCIsland/EIsland < 0.8
HFL 18	D* gold selection	See web pages for longer description.
HFL 19	D0/D0-bar mixing	See web pages for longer description.
HFL 21	MESON + jets	Two Jets ET>3.5, eta<2.5 (EUCELL) Pz/E < 1.0 and E-Pz<100 .or. of any of the 6 D meson low Pt cut channels
HFL 24	jet(s) + electron	See web pages for longer description
HFL 25	jet(s) + muon	See web pages for longer description
HFL 27	MVD inclusive trigger Only active since May 30 th 2006 (~40% of HERA II integrated lumi)	All SLT PHP, DIS and MUON slots MVD vertex within -30 cm < z(vtx) < 30 cm at least 4 tracks fitted to the primary vertex Et > 8 GeV (excluding the 1st two inner rings around the beam pipe) At least three tracks with pt > 0.75, 0.6, 0.45 GeV Impact parameter significance cut for the 3rd highest significance track. The impact parameter significance is evaluated with respect to the primary event vertex.
HFL 28	MVD inclusive trigger using beam spot Only active since May 30 th 2006	Same cuts as for HFL 27, but the impact parameter significance is evaluated with respect to the beam spot.

N_{ch} distributions in ZEUS data for the HFL triggers of interest

10⁶ # events - HFL 1 - HFL 5 10⁵ **HFL 21 HFL 28** 10⁴ 10³ 10² 10

30

35

40

 N_{ch}^{rec}

25

<u>
上</u>
20

It is ~3 times less populated mostly because it was only available since May 30th 2016.

ZEUS data 2003 to 2007

MC closure studies

Compare generator-level MC correlations to the reconstructed ones.

Discrepancies between them were observed in the DIS analysis and were assigned a systematic uncertainty.

There are two sources of MC nonclosure.

Source 1:

```
Generated N_{ch} != reconstructed N_{ch}:
```

 \rightarrow correlation gets assigned to a wrong N_{ch} bin (Unfolding problem).

To isolate this, we will plot gen correlations against N_{ch}^{rec} and N_{ch}^{gen} .

Source 2:

Reconstruction inefficiencies: 1-particle, 2-particle, ..., n-particle inefficiencies

To isolate this, we will plot both gen and weighted correlations against N_{ch}^{rec}

In the DIS analysis, both were lumped together.

That is, $(c_n^{gen} vs N_{ch}^{gen}) - (c_n^{rec} vs N_{ch}^{rec})$ was the MC nonclosure systematic.

Here, we'll look into 1) and 2) separately.

Source 1 MC closure source Bin migration

DIS Ariadne 0607p

We can use the RooUnfold package to treat bin migration.

Use the Bayesion method with the regularization parameter: "iterations" = 4.

Source 1 MC closure Bin migration

11

Attempt to unfold the **generated** correlation function c_2 {2}.

We cannot directly unfold a correlation function like a multiplicity distribution.Instead, try to unfold the numerator and denominator of c2{2} separately.Numerator = Sum of cosines, Denominator = Sum of pairs

The pair distributions can be easily unfolded but not the sum cosines. This is because events with different correlation strengths may migrate differently. A multi-dimensional unfolding problem.

Source 2 MC closure Reconstruction inefficiencies

As in the DIS analysis, we will apply pair-reconstruction efficiency corrections to 2-particle correlations.

Single-particle correction factor $w_i = \frac{N_{gen}(p_T, \eta, \varphi, q)}{N_{rec}(p_T, \eta, \varphi, q)} \quad \text{charge}$ Pair correction factor $w^{(2)} = \frac{N_{gen}^{pairs}(\vec{x})}{w_1 \, w_2 \, N_{rec}^{pairs}(\vec{x})}$ Type 1 (from DIS analysis) was called $W_{\Lambda m}$ $x_1 = \Phi = \varphi_1 - \varphi_2$ $x_2 = |\Delta \eta|$ $x_3 = |q_1 + q_2|$ $x_4 = N_{ch}^{rec}$

Source 2 MC closure Reconstruction inefficiencies

New 4-particle correction factor.

Application of weights to correct for tracking inefficiencies

2 passes over the MC data are needed to calculate the efficiency corrections. Pythia PHP light-flavour jet 06e used exclusively at the moment.

1st pass: No weights applied. Results used to calculate single-particle efficiency corrections, w_i

 2^{nd} pass: w_i applied.

Results used to calculate pair and quadruplet efficiency corrections.

The weights are then applied to MC data to test their effectiveness (MC closure).

Type 1 vs Type 2 pair weights

PHP pythia lf jet 06e

The effectiveness of both is comparable.

Type 2 weights are preferred since they have the same structure as that used for 4-particle correlations.

Single-particle weights are clearly not enough, as observed in the DIS analysis. Pair weights work well except at low N_{ch}^{rec} .

Both rec and gen correlations are plotted versus N_{ch}^{rec} .

Single-particle weights are clearly not enough, as observed in the DIS analysis. Pair weights work well except at low N_{ch}^{rec} .

Both rec and gen correlations are plotted versus N_{ch}^{rec} .

Single-particle weights are clearly not enough. Quad weights work well except at low N_{ch}^{rec}.

Both rec and gen correlations are plotted versus N_{ch}^{rec} .

Single-particle weights are clearly not enough. Quad weights work well except at low N_{ch}^{rec}.

Both rec and gen correlations are plotted versus $N_{\rm ch}^{\ \ \rm rec}.$

Product of 6 pair weights to correct 4-particle correlations does not work well. Quad weights work well except at low N_{ch}^{rec} .

c_n{2} Total magnitude of MC nonclosure

PHP pythia If jet 06e

Sources 1 and 2 combined

Total MC nonclosure is poor when correlation changes rapidly with Nch.

The scale here is much smaller than in DIS MC samples.

Note that the correction scheme explored here is different than that used in the DIS analysis. Main difference is x_4 on slide 12. In DIS analysis N_{ch}^{gen} was used. Here we used N_{ch}^{rec}

C_n{4} Total magnitude of MC nonclosure

PHP pythia lf jet 06e

Sources 1 and 2 combined

Total MC nonclosure is poor when correlation changes rapidly with N_{ch} . Note that the scales are very small.

Total MC nonclosure is poor when correlation changes rapidly with N_{ch} . Note that the scales are very small.

Results in ZEUS PHP data

Error bars for PHP are statistical only.

Keep in mind that HFL 28 has a substantial trigger bias for $N_{ch} < 10$.

ZEUS data

-0.01

E.

Error bars for PHP are statistical only.

-0.16

Keep in mind that HFL 28 has a substantial trigger bias for $N_{ch} < 10$.

N^{rec} N^{rec}_{ch}

ZEUS data

4-particle correlations in PHP

The cumulant is positive within statistical uncertainties up to N_{ch} ~30.

It is not significantly negative at very high N_{ch}.

Keep in mind that HFL 28 has a substantial trigger bias for $N_{ch} < 10$.

Summary

MC nonclosure

- 2 sources of nonclosure exist.
- 1^{st} source arises from bin migration due to N_{ch}^{rec} distortions and is not easily unfolded in a 1D approach.
- 2nd source arises from distortions to the correlation function from tracking inefficiences.
- Pair and quadruplet weights have been calculated and applied as a correction.

Results in PHP

- Correlations are quite different than those in DIS.
- 4-particle cumulant is not significantly negative as seen in heavy-ion collisions. However, the expectation of negative values may not apply to such small systems.
- c_2 {2} and c_2 {4} both go to zero at high Nch.
- This observation seems to suggest that collective signatures are not observed in PHP.

Next Steps

- Begin estimates of other systematic uncertainties and DIS contamination levels.
- Complete the analysis note.

Extra

PHP pythia lf jet 06e

Single-particle correction factors

Type 2 Pair correction factors (10 < Nch < 20) PHP pythia If jet 06e

