WG:Transition Edge Sensor Status Report

Rikhav Shah, Axel Lindner, Carolin Kohl, Friederike Januschek, Katharina-Sophie Isleif, Manuel Meyer, Sandy Croatto

DESY Hamburg, 9 June 2020

Outline

- Lab and TES Status
- TES Analysis
 - DAQ Setup and workflow
 - Data sets
 - The 3-pronged analysis approach
- TES Room
- TES Lab tests
- Next steps
- Summary

TES in a nutshell

DESY. Rikhav Shah, ALPS Collab Meeting, TES Report

Status

TES Lab, next phase

- Cryostat warmed up, awaiting next round of tests to commence
- Last tests have been done in the first week of March 2020, setup has remained unused since then for about 3.5 months due to coronavirus
- Focus of the work has been shifted to:
 - Understanding better the TES data, as we have enough data to streamline the data analysis
 - Improving TES data analysis with new methods
 - Optimisation plans for the TES
 - Planning tests for the detection efficiency, and methods for background suppression

Status

TES Status

- Currently only one of two TES detectors on the sensor module is active
- Heating issues with the SQUIDs persists, even with a bath temperature of ~21 mK

- Optimal SQUID settings heat the TES beyond its operation region
- Using modified SQUID settings to operate the TES:
 - Unstable SQUID working point
 - Especially sensitive to any electromagnetic fluctuations in the TES vicinity
- However, data collection from TES is operational for different TES setups
- Even with non-optimal SQUID settings, we are successfully able to detect 1064 nm photon pulses and background pulses and collect data
- Optimisation will be a focus of the restarted lab activities!

TES DAQ

- TES and SQUIDs are operated and read out by the Magnicon SQUID electronics controlled by a dedicated laptop
- DAQ via another PC with the Alazar card installed, where the output of the SQUID electronics is attached.
- In this setup, also including the cryostat, efforts have succeeded in considerably reducing the noise due to electronic fluctuations and ground loops for a better SNR.

TES DAQ

- DAQ and processing done bearing in mind some goals:
 - Achievement of very low background rates, $\mathcal{O}(10^{-5}) Hz$, with optimised background rejection
 - Identification of different background event types, whether an optical fiber is attached to the TES or not
 - Obtaining the best picture possible of the TES response to a 1064 nm photon, from which TES information can be further extracted

In order to detect (with 50% detector efficiency) a photon with 5σ confidence in a measurement over 20 days, we need to obtain a dark rate < $7.7 \times 10^{-6} Hz$

Value taken from Pg 5, Transition Edge Sensor, ALPS II - Design requirement document, Document number v3, *Jan Hendrik Põld and Hartmut Grote*

DESY. Rikhav Shah, ALPS Collab Meeting, TES Report

- TES Pulse analysis adopts a three pronged approach currently:
 - Backbone of the analysis: **Fitting the pulses** and selecting based on fit parameters
- In addition, we study the scope of using:
 - Machine learning techniques
 - Principal component analysis

Fitting

- Fitting TES pulses performed via a classical approach which models the TES pulses and can be used for suppression of backgrounds and extraction of TES information.
- Has been done with independent approaches with python and ROOT, implemented separately
- The fitting procedure works extremely stably for all kinds of pulses

Fitting

- The fitting parameters from the 1064 nm photon pulses are used to define cuts
- To select eligible photons in background data sets, the cuts ensure for 1064 nm pulses:
 - ~90% of the pulses remain after the cuts
 - An Energy resolution 7-11% is obtained

Intrinsics Data Set '7 day'

For an intrinsic background data set with active data taking time of 54.8 hours, we select no photon pulses with the cuts! The limit obtained on the (intrinsic) dark rate is $1.86 \times 10^{-5} Hz$ at 95% CL

TES can fulfil the specs required for the dark rate (with no optical connections to the TES)

Principal Component Analysis PCA

• The PCA approach has been used to improve energy resolution, hope to use it for our data.

Tomography of photon-number resolving continuous-output detectors, Peter C Humphreys et al 2015 New J. Phys. 17 103044; Photon-number-resolving transition-edge sensors for the metrology of photonic microstructures based on semiconductor quantum dots, M. Schmidt et al, Journal of Low Temperature Physics volume 193, pages 1243–1250(2018)

- Idea is to reduce the raw pulse to a couple of meaningful, information-heavy 'components' per pulse (Akin to fit parameters per trigger)
- Works stably for the data sets available, large datasets processed in seconds
- Background rates comparable to those from fitting procedure

Machine Learning by Manuel Meyer

- First steps towards implementing machine learning algorithms to better our photon selection using the parameters from pulse fitting
- Using out-of-the-box algorithms like Decision Trees (DTs), Boosted Decision Trees (BDTs) and Random Forests (RFs).
- Working on few data samples collected with non-optimal system
- Background rejection performance already comparable to pulse fitting approach
- Optimistic about improvement with more data samples, and with the PCA

Method Used	Intrinsic dark rate achieved, in Hz		
Decision tree	$2.463 \times 10^{-5} \pm 5.51 \times 10^{-6}$		
Boosted Decision Tree	$2.463 \times 10^{-5} \pm 5.51 \times 10^{-6}$		
Random forest	$1.86 imes10^{-5}~$ at 95% CL		
Cut-based selection	$1.86 imes10^{-5}~$ at 95% CL		

Magnetic Shielding Tests TES Lab

- Non-optimal SQUID settings used result in SQUIDs losing lock with EM interference, TES being overloaded with EM pulses
- Need to understand the extent of magnetic shielding due to the cryostat vacuum, the inner µ metal shielding, and the aluminium can housing the TES
- Could also install a redesigned aluminium can to house the TES, which is also needed to accommodate the updated sensor module
- Tests planned with warmed up and vented cryostat this week

TES Room Layout

- New layout for proposed TES Room under the bridge
- Another proposed candidate for the TES Room is on Floor 6 near the main power supply for the magnets
- Can be considered viable only after
 - Tests for EM interference
 - Tests with a much longer optical fiber, to check for increased backgrounds also due to cosmics and radioactivity

Optical table

DESY. Rikhav Shah, ALPS Collab Meeting, TES Report

TES Room Layout

TES Optics

- Effects of adding and making optical connections to the TES
- To understand the make up of the extrinsic background
- Studies to reduce suspected black body pile up
- Optimisation of filter bench and investigating fiber curling
- Single photon source to calibrate the TES
- Design of setup to measure TES efficiency

Next steps

- Restarting lab work!
- Optimising TES working point, and possible updates to sensor module
- Investigate extrinsic background and methods to reduce it (fiber curling, filter bench)
- Longer data taking runs for intrinsic background level (currently limits only!)
- Efficiency measurements and optimisation
- Need to understand the source of the the background pulses for the full setup
- Magnetic shielding tests
- Tests on dark counts with a long optical fiber for TES room
- Analysis optimisation
- Expansion of R&D efforts with the UK proposal

Summary

- "No-lab" time has been very well utilised for data understanding and streamlining DAQ response
- Data collection and analysis is very stable and robust even with suboptimal setup
- Successful analysis of the data with baseline fitting
- ML and PCA analysis in place, results consistent with baseline analysis, could possibly improve efficiency and energy ______ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < ____ < _____ < ____ < ____ < ____ < ____ < _____ < ____ < ____ < ____ <

•	The intrinsic backgrou	ALPS ~ • Rikhav	• Rikhav 🏡	
	a 54.8 hour run) $\leftarrow \rightarrow \odot$	① Threads@ Mentions & reactions	 Shielding to dos: cover the alucan wuh Thursday, February 27th ogether. Cover all cables in the foil, et IV Curve analysis by Carolin is up onoine in the TES cloudshare for viewing and playing around with TES DAQ Lab Manual is turned over to Carolin who will take care of it and update it as needed 	
Ø	● Rikhav ☆	Draftsス Saved items	Wednesday, June 3rd	
ons	 plate Mag shielding options wrt ferrr Options to see whta problem h New shape requires target shie Has to take into account the fit Need to look up the values for 	 People Apps Files ↑ Show less 	Rikhav 12:40 PM https://github.com/rikhavs/TESPA G GitHub rikhavs/TESPA TES Pulse Analysis with python3. Contribute to rikhavs/TESPA	
 Shielding to dos: cover the aluc IV Curve analysis by Carolin is u TES DAQ Lab Manual is turned 	Channels + general # optics	development by creating an account on GitHub. https://github.com/rikhavs/TESPA G GitHub rikhavs/TESPA		
+	Rikhav 12:40 PM https://github.com/rikhavs/TESPA	# random # tes-detector	development by creating an account on GitHub.	
	GitHub rikhavs/TESPA TES Pulse Analysis with python3 development by creating an acco https://github.com/rikhavs/TESPA	 Direct messages + Slackbot Rikhav (you) Axel 	Rikhav 12:26 PM https://github.com/rikhavs/TESPA	
+	GitHub	o Carolin Kohl	TES Pulse Analysis with python3, for fitting of pulses and subsequent	

Fitting functions

- TES Pulse analysis adopts a three pronged approach currently: **Fitting the pulses** and selecting based on fit parameters, using **machine learning** techniques and using **principal component analysis**.
- Fitting TES pulses can be done via:
 - TES Small-Signal-Theory response : Analytical solution to the response of the TES to an incident photon.
 - Photon flare function: Models the TES pulses very accurately, adapted from astrophysical gamma flare analyses.

$$V(t) = C - \frac{A}{\chi} \cdot \left(\exp\left(-\frac{(t-t_0)}{t_r}\right) + \exp\left(-\frac{(t-t_0)}{t_d}\right) \right),$$

with $\chi = \left(\frac{t_d}{t_r}\right)^{\frac{td}{t_r-t_d}} - \left(\frac{t_d}{t_r}\right)^{\frac{tr}{t_r-t_d}}, t > t_0$
$$V(t) = C - \frac{2A}{\exp\left(-(t-t_0)/t_r\right) + \exp\left(-(t-t_0)/t_d\right)}$$

Photon flare

TES SST Response

Fitting functions: Choices

TES SST Response

- Fitting in general is time consuming and does not always work too well
- Can be used at best to extract TES info from a well defined pulse

Photon flare

- Fitting in general consumes lesser time and fits all kinds of pulses well
- Can be used to model photon pulses very well and distinguish between 1064 nm photon pulses and background pulses
- Best used for background analyses

Best bargain approach:

Fit all pulses with the flare function and use it discriminate between photon and background pulses

Fit the average of the photon flare fits with the TES SST response and extract TES information

Fitting functions: Examples

TES SST Response 20 10 0 Voltage (mV) -10 -20 $t_0 = 1922448 \mu s$ $\chi^2/d. o. f. = 0.44$ -30data fit -40trigger time 10 20 30 0 20 $t_0 = 1153109 \mu s$ $\chi^2/d. o. f. = 0.69$ data fit 0 Voltage (mV) trigger time trigger time -20 -4030 10 20 0 Time (μs)

PCA: Principal Components

Uses and Pros

- Attempt to find linear combinations of features in the original high dimensional data matrix, i.e. interrelations in the data / measurement breaking up the data set into its most useful components
- V is the set of all triggered signals where each column is a trigger
- For any data sample with T triggers of M data points each, the dataset is thus a matrix with dimensions (M \times T):

Dataset $V = (\text{trigger 1} | \text{trigger 2} | \text{trigger 3} | \dots | \text{trigger T})_{M \times T}$

- Each trigger (a column) can then be further decomposed into $\{v_i(t)\}$, where V is an array of M values
- Each v_i can be represented as $v_i = \sum s_{ij} w_j(t) \implies v_1 = s_{11} w_1 + s_{12} w_2 + \dots + s_{1T} w_T$
 - where v_i is the measured voltage at a time t (within the trigger)
 - s_{ij} are the mixing factors, or coefficients, and w_j are the Principal Components.

PCA: Principal Components

Uses and Pros

- Each measured voltage value in any trigger is the linear sum of all w_j . What we hope to is to go from

$$v_{i} = \sum_{j}^{M} s_{ij} w_{j}(t) \implies v_{1} = s_{11} w_{1} + s_{12} w_{2} + \dots + s_{1T} w_{T}$$

to
$$v_{i} = \sum_{j}^{N} s_{ij} w_{j}(t) \implies v_{1} = s_{11} w_{1} + \dots + s_{1N} w_{N},$$

- Here only N principal components are used and typically N << T.
- We use PCA because the lion's share of the information is then captured in the first few PCs.

This means reducing the dimensionality of the original dataset.

How to: PCs calculation

٠

- For a dataset, we can calculate W = eigenvectors $(V^T V)$, where $V^T V$ is the covariance matrix for V
- The matrix W (of the principal components) is the matrix corresponding to each trigger in the original dataset V.
- If N is number of chosen principal components for the analysis:

 $V = (\text{trigger 1}|\text{trigger 2}|\text{trigger 3}|\dots|\text{trigger T})_{M \times T}$

 $\implies W = (\text{Column of N PCs for trigger } 1|\dots|\text{Column of N PCs for trigger } T|)_{N \times T}$

• To express the dataset V in terms of W, we use $V = S \cdot W$, and calculate the coefficient matrix S using $S = V \cdot W^T$:

 $egin{pmatrix} s_{11} & s_{12} & \dots & s_{1N} \ \dots & & & & & \ s_{M1} & & \dots & s_{MN} \end{pmatrix}_{M imes N}$

For the reduced dataset V' = S · W, which has then the same dimensions as V, but each measured v_i has lesser noisy information
we hope: most (useful) information is captured in the PCs used

How to: PCs calculation

.

- For a dataset, we can calculate W = eigenvectors $(V^T V)$, where $V^T V$ is the covariance matrix for V •
- The matrix W (of the principal components) is the matrix corresponding to each trigger in the ٠ original dataset V. **Reduction in dimensions:**
- If N is number of chosen principal components for the analysis: ٠

Each trigger can be understood as a few PCs, like it was the few $V = (\text{trigger } 1 | \text{trigger } 2 | \text{trigger } 3 | \dots | \text{trigger } T_{\mathcal{I}_{M \times T}} | \text{fit parameters.}$

$$\implies W = (Column of N PCs for trigger 1|...|Column of N PCs for trigger TEach row is the array of PCs$$

To express the dataset V in terms of W, we use $V = S \cdot W$, and calculate the coefficient matrix S ٠ using $S = V \cdot W^T$:

$\left(s_{11} \right)$	s_{12}	•••	s_{1N})	
$\backslash s_{M1}$		•••	s_{MN}	$M \times N$

For the reduced dataset $V' = S \cdot W$, which has then the same dimensions as V, but each ٠ measured v_i has lesser noisy informationwe hope: most (useful) information is captured in the PCs used

Recreating Pulses Choice of PCs

Trigger number 135, Dataset: Light

 Taking a look at the 1064 nm pulse, 2 PCs do the trick
 From 5 PC onwards, we see that the noise fluctuation starts to creep in.