CALICE AHCAL technological prototype: overview and CERN testbeam analysis

- Motivation
- The large AHCAL technological prototype
 - Construction and commissioning
 - Testbeam: calibration and analysis

> Outlook

Katja Krüger, for the CALICE Collaboration BMBF Scintillator R&D general meeting 6. July 2020

Motivation

Katja Krüger | The CALICE AHCAL | BMBF Scintillator R&D 2020 | 5. July 2020 | Page 2/30

Motivation: Future Higgs factories

- > Higgs factory identified as next priority in European Strategy Update
- > future e+e- colliders offer unique physics possibilities
 - precise model-independent Higgs couplings
 - precision measurements of W, Z and top properties
 - indirect and direct searches for BSM physics
- ILC: under political consideration in Japan
 - Initial \sqrt{s} of 250 GeV, upgradeable to 1 TeV
- > CLIC: proposed at CERN
 - Initial \sqrt{s} of 380 GeV, upgradeable up to 3 TeV
- FCCee: possible first stage of FCC project at CERN
 - Initial √s of 90 GeV, stages up to 350 GeV
- main interest for calorimeters at Higgs factory: jet energy resolution

Physics	Measured	Critical	Physical	Required
Process	Quantity	System	Magnitude	Performance
$Zhh \ Zh o q \bar{q} b \bar{b} \ Zh o ZWW^* \ u \overline{\nu} W^+ W^-$	Triple Higgs coupling Higgs mass $B(h \rightarrow WW^*)$ $\sigma(e^+e^- \rightarrow \nu\overline{\nu}W^+W^-)$	Tracker and Calorimeter	Jet Energy Resolution $\Delta E/E$	3% to 4%

Jet reconstruction at a Linear Collider

- > goal: want to distinguish Z → jet jet from W → jet jet
- > requires σ(E)/E ≈ 3-4%
- > can be reached by particle flow algorithms (PFA)
 - for each particle within a jet: use the subdetector with optimal resolution
 - need to avoid double counting
- > need an imaging calorimeter!
- requirements for the calorimeter:
 - highly granular
 - reconstruction of neutral particles: good energy resolution
 - calorimeter has to be within magnet coil: very compact

Calorimeter Technologies for Linear Collider detectors

The AHCAL Technological Prototype

Katja Krüger | The CALICE AHCAL | BMBF Scintillator R&D 2020 | 5. July 2020 | Page 6/30

AHCAL technological prototype: design

- highly granular scintillator SiPM-on-tile hadron calorimeter, 3*3 cm² scintillator tiles optimised for uniformity
- fully integrated design
 - front-end electronics, readout
 - voltage supply, LED system for calibration
 - no cooling within active layers
 - electronics adapted to ILC beam structure -> power pulsing
- scalable to full detector (~8 million channels)
- geometry inspired by ILD, similar to SiD and CLICdp
- HCAL Base Unit: 36*36 cm², 144 tiles, 4 SPIROC2E ASICs
 - slabs of 6 HBUs, up to 3 slabs per layer

AHCAL technological testbeam prototype

- > 38 active layers of 72*72 cm²
- > 4 HBUs per module
 - 16 ASICs, 576 channels of 3*3 cm² tiles
 - in total: 608 ASICs, ~22000 channels
- > all modules with surface-mount MPPCs
 - S13360-1325PE
 - 2668 pixels
 - operated at 5V overvoltage
 - nominal operation voltage within 200mV in a module -> use same voltage
- > all modules are interchangeable, so positioning in stack according to quality (worst modules in the back)
- > additionally in June and October: "Tokyo module" with 6*6 cm² tiles

Mass production

- > design optimized for mass production
 - SMD SiPMs soldered automatically
 - injection-moulded polystyrene tiles, no further surface treatment
 - automatic wrapping in ESR reflector foil
 - glueing of tiles with screen printer and pick-and-place machine

Katja Krüger | The CALICE AHCAL | BMBF Scintillator R&D 2020 | 5. July 2020 | Page 9/30

The Testbeam at CERN SPS

Katja Krüger | The CALICE AHCAL | BMBF Scintillator R&D 2020 | 5. July 2020 | Page 10/30

Testbeam setup 9. – 23. May 2018 in H2 at SPS

> 38 active layers of 72*72 cm² in steel absorber with 1.7 cm layer thickness (~4 λ)

- > mounted on the movable platform ("scissors table") in H2
- beam instrumentation: wire chambers, trigger scintillators, Cherenkov detector

Testbeam setup 27. June – 4. July 2018 in H2 at SPS

> as in May, plus:

- added one module with 6*6 cm2 tiles
- added CMS HGCAL "thick stack" (12 layers of 1 HBU, 7.4 cm steel absorber) as tailcatcher
- added single HBU in front of absorber as "pre-shower" detector

Katja Krüger | The CALICE AHCAL | BMBF Scintillator R&D 2020 | 5. July 2020 | Page 12/30

Goals of SPS testbeam

technical

- demonstrate capabilities of SiPM-on-tile calorimeter concept with scalable detector design
- reliable operation of large prototype (with power pulsing!)
- > scientific
 - energy linearity and resolution for electrons and pions
 - hit time correlations
 - shower profiles
 - shower separation

> data sets

- wide muon beam for (cross check of) MIP calibration
- energy scan for electrons (with and without power pulsing)
 - energies: 10, 20, 30, 40, 50, 60, 80, 100 GeV
- energy scan for negative pions
 - energies: 10, 15, 20, 30, 40, 50, 60, 80, 100, 120, 160, 200 GeV (+ test at 350 GeV)
- typically several 100,000 events per energy & particle type
- data at shifted beam positions

Electrons during beam tuning in June

Very first look into pion data

Calibration

Katja Krüger | The CALICE AHCAL | BMBF Scintillator R&D 2020 | 5. July 2020 | Page 16/30

Uniformity and Stability: Gain

Olin Pinto (DESY, Uni HH)

- product of SiPM (charge/pixel) and ASIC (ADC/charge) gains
- determined from single-pixel-spectra in LED runs
 - initial determination & daily checks
- µ=16.6 ADC/pixel, RMS=1.0 ADC/pixel (6%)
 - within an ASIC: ~2.5%

> uniform and very stable gain

Gain of layer 12

Uniformity and Stability: MIP signal Daniel Heuchel (DESY, Uni HD)

- MIP signal: product of light yield (pixel/MIP) and gain (ADC/pixel)
- MIP value in ADC relevant for trigger threshold
- µ=228 ADC, RMS=31 ADC (14%)
 - uniform enough for same trigger threshold for all channels

Uniformity and Stability: Light Yield

- light yield is characteristic of SiPM-tile system
- > calculated from MIP signal and gain
- µ=13.8 pixel, RMS=1.6 pixel (12%)
 - smaller RMS than MIP value in ADC
 - small decrease during production
- > 0.5 MIP threshold at ~7 pixels leads to negligible noise (trigger threshold at ~ 0.2 MID)

(trigger threshold at ~0.3 MIP)

Katja Krüger | The CALICE AHCAL | BMBF Scintillator R&D 2020 | 5. July 2020 | Page 19/30

- time is measured with a TDC, resolution depends on bunch clock
 - SPIROC ASIC can run with different bunch clocks: 250 kHz (testbeam mode) and 5 MHz (ILC mode)
- > design goal is ~1ns resolution in ILC mode
- > obtained for muons:
 - ~2.6 ns resolution in testbeam mode
 - ~1.6 ns resolution in ILC mode
 - resolution deteriorates with number of hits in an ASIC
- further studies ongoing

Analysis

Katja Krüger | The CALICE AHCAL | BMBF Scintillator R&D 2020 | 5. July 2020 | Page 21/30

- > optimised shower start finder
 - based on number of hits and energy in sliding window of layers
 - reach >90% of events correctly reconstructed within +-2 layers
 - can be used to measure pion interaction length of AHCAL
 - important ingredient in particle identification

Vladimir Bocharnikov (DESY, MePHI)

BDT classification

Model and input. TBJune18.

Software and model:

- LightGBM
- Multi-class gbdt
- Multi log loss function
- model to .C converter (m2cgen)
- implementation in Marlin processor was tested

Observables:

- · Number of hits
- Shower radius
- · Center of gravity in z
- Energy fraction in first 22 layers
- · Energy fraction in shower center
- · Energy fraction in shower core
- · Energy fraction in track hits
- Shower start

Train set:

- · MC particles 10-100GeV:
- electrons
- pions (st ≤ 40)
- muons (10 and 40 GeV)

ejs,

MC muona

MC electrons

MC piens (showering)

fracTrack

Energy fraction in track hits

Event radius

6.2

108

101

 10^{3}

 10^{3}

 10^{3}

fracCore

0.0

BDT classification

Output. Comparison with data.

Shower Shapes and Particle Flow Analysis

Olin Pinto Daniel Heuchel

- started detailed analysis of electron and hadron shower data
 - longitudinal and radial shower shapes
- > preparation of data analysis with PandoraPFA
 - overlay of several measured shower events

Mean energy from shower start

Bonus Feature: CMS HGCAL

Katja Krüger | The CALICE AHCAL | BMBF Scintillator R&D 2020 | 5. July 2020 | Page 26/30

CMS HGCAL

- high-granularity upgrade of the CMS calorimeter endcap for HL-LHC
- ~620m2 silicon, ~400m2 scintillator
- to be installed in 2025
- DESY involved in the scintillator part, capitalising on AHCAL experience
 - design of readout boards ("tileboards")
 - further development and application of assembly techniques
 - scintillator wrapping (Uni HH)
 - tileboard assembly (Uni Mainz)
 - beam tests
 - new challenges:
 - Radiation → studies of rad-hard SiPMs at Uni HH
 - operation at -30°
 - data rates

Katja Krüger | The CALICE AHCAL | BMBF Scintillator R&D 2020 | 5. July 2020 | Page 27/30

~2m

,2.3m

Testbeam setup October 2018 in H2 at SPS: HGCAL + AHCAL

> 28 layers HGCAL EE (silicon/lead), 12 layers HGCAL FH (silicon/steel), 39 layers AHCAL (scintillator/steel)

Event displays: 300 GeV hadron showers

data are synchronized!

from A. Steen

- have collected a unique dataset in 2018

 analysis has high priority now

 AHCAL tests in 2019 & 2020: smaller setups

 alternative readout ASIC (KlauS)
 - ASIC by Uni HD
 - HBU by DESY
 - beam tests of a megatile layer (Uni Mainz)
 - DESY will continue to provide testbeam support
- Future tests with the large prototype
 - hadron beam with best timing measurement (ILC mode)
 - beam tests with (existing) tungsten absorber structure
 - combined beam test with ECAL in front

Backup

Very first look into data

Uniformity and Stability: Gain

- product of SiPM (charge/pixel) and ASIC (ADC/charge) gains
- determined from single-pixel-spectra in LED runs
 - initial determination & daily checks
- µ=16.6 ADC/pixel, RMS=1.0 ADC/pixel (6%)
 - within an ASIC: ~2.5%

> uniform and very stable gain

Uniformity and Stability: MIP signal

- MIP signal: product of light yield (pixel/MIP) and gain (ADC/pixel)
- MIP value in ADC relevant for trigger threshold
- µ=228 ADC, RMS=31 ADC (14%)
 - uniform enough for same trigger threshold for all channels
- stable between May and June runs

Katja Krüger | The CALICE AHCAL | BMBF Scintillator R&D 2020 | 5. July 2020 | Page 34/30

MIPs: standard candle with surprises

- well-defined energy deposition makes MIPs ideal standard candle for calibration and cross check of detector simulation at small hit energies
- > for hits on track: simulation describes data very well
- outside of tracks (possible thanks to low noise SiPMs): more hits and more energy in MC
 - under investigation: detector setup in simulation or genuine difference in muon-detector interaction

S. Huck

CMS HGCAL

Driving Layout and Granularity

Active Elements:

Hexagonal modules based on Si sensors CE-E and high-radiation regions of CE-H Scintillating tiles with SiPM readout in low-radiation regions of CE-H

Key Parameters:

- ~215 tonnes per endcap, full system at -30°C
- ~620m2 Si sensors in ~30000 modules
- ~6M Si channels, 0.5 or 1cm2 cell size
- ~400m2 of scintillators in ~4000 boards
- ~240k scint. channels, 4-30cm2 cell size

Power at end of HL-LHC:

~125 kW per endcap, transferred via front-end DCDC. Two phase CO2 cooling

Electromagn. calorimeter (CE-E):

Si, Cu & CuW & Pb absorbers, 28 layers, 25 X0 & ~1.3 λ

Hadronic calorimeter (CE-H):

Si & scintillator, steel absorbers, 22 layers, ~8.5 λ

CMS HGCAL + AHCAL testbeam: HGCAL configurations

1st config : 10-17 October

- EE with 28 modules (14 mini-cassettes)
- FH with
 - 9 layers with 7 modules
 - 3 layers with 1 module in the back

2nd config : 17-22 October

- EE with 28 modules (14 mini-cassettes)
- FH with
 - 2 layers with 1 module in the front (no absorber between these 2 layers)
 - 9 layers with 7 modules

3rd config : 22-24 October + 10 days of parasitic data taking

- EE with 8 modules (only on one face of the cooling plates)
- FH with
 - 12 layers with 7 modules

DES

from A. Steen