

Daniele Guffanti, Nils Brast, Michael Nieslony, Hans Steiger, Michael Wurm Johannes Gutenberg–Universität Mainz

Water-based Liquid Scintillator TestCell Status

BMBF Scintillator R&D Meeting - 06.07.2020

Why a WbLS TestCell

WbLS are candidate for the next generation of optical neutrino detectors

D. Guffanti, N. Brast, M. Nieslony, H. Steiger, M. Wurm (JGU Mainz)

 \rightarrow

Preliminary MC results

Stati

2/13

Why a WbLS TestCell

TestCell concept

Features

► Lab-scale

- ▶ Versatile: cosmic rays, calibration sources, low-energy *e*⁻, ...
- ▶ Flexible geometry and easy readout access

benchmark for new photodetection system (LAPPD, SiPM array, ...)

Fast PMT Array

TestCell concept

Muon tracker

Features

► Lab-scale

- ▶ Versatile: cosmic rays, calibration sources, low-energy e^- , ...
- Flexible geometry and easy readout access

benchmark for new photodetection system (LAPPD, SiPM array, ...)

Muon tracker

Trigger + independent μ tracking

Fast PMT Array

TestCell concept

Muon tracker

Features

Lab-scale

- ▶ Versatile: cosmic rays, calibration sources, low-energy e^- , ...
- Flexible geometry and easy readout access benchmark for new photodetection system (LAPPD, SiPM array, ...)

Muon tracker

Trigger + independent μ tracking

Target

pprox 20 l, designed to enhance Čerenkov ring pattern

「arget

TestCell concept

Features

Lab-scale

- ▶ Versatile: cosmic rays, calibration sources, low-energy e^- , ...
- Flexible geometry and easy readout access

benchmark for new photodetection system (LAPPD, SiPM array, ...)

Muon tracker

Trigger + independent μ tracking

Target

 \approx 20 l, designed to enhance Čerenkov ring pattern

Fast PMTs

Čerenkov/Scintillation separation (time + pattern)

WbLS characterization (LY, time profile, ...)

Preliminary MC results

Statu

WbLS Target

The Tank

- Diameter \approx 30 cm
- Acrylic endcaps + black barrel
- (Removable) Air Gap Dome stop production of Čerenkov light

WbLS Properties

Water + (1%)LAB+(2.5 g/l)PPO

Preliminary model:

- Emission spectrum of PPO
- LY = 100 ph/MeV (i.e. 1% of pure LAB+PPO)
- ► Water refractive index
- ► Double exponential scintillation time profile $(\tau_{\text{fast}} = 2.5 \text{ ns}, \tau_{\text{slow}} = 12.7 \text{ ns})$

 $N_{ph}^{\tilde{C}er}/cm$ [250, 620 nm] pprox 500 N_{phl}^{Scnt}/cm [PPO] pprox 150

BUT important effect of **absorption/re-emission** of Čerenkov photons on PPO molecules

D. Guffanti, N. Brast, M. Nieslony, H. Steiger, M. Wurm (JGU Mainz)

WbLS optical properties

Beer-Lambert law for composition of optical properties

Two distinct absorption length

- Real absorption photon absorbed and lost forever
- **Re-emission absorption** photon is absorbed, WLS and re-emitted (isotropically) with $\tau_{PPO} \approx 1.6$ ns

A significant fraction of Čerenkov photons are absorbed and re-emitted in this way

Preliminary MC results

Stati

Photodetection system

Requirements

- High granularity (hit pattern)
- Fast response
- Excellent time resolution (time separation)

16 fast 1 inch PMTs

Shortlisted candidates TTS 160-290 ps (FWHM)

Full assembly + mu-metal shield for accurate timing

Possible top array for measurement of WLS + Scintillation light

Data Acquisition Chain

- PMT signal will (likely) require amplification stage
- Amplified signals feed a 16 ch.
 fast discriminator which triggers the digitizer
- Record digitized waveform with high sampling rate (5 GS/s) to exploit every possible information in the signal

MC Simulation of the test cell

Electronic response simulation

Waveform samples

Adit L25D191" PMT + 10x NIM amplifier + DRS4 Evaluation board

Electronic response simulation

Waveform samples

Adit L25D191" PMT + 10x NIM amplifier + DRS4 Evaluation board

Noise power spectrum

^oower density (a.u.)

Stati

Electronic response simulation

Waveform samples

Adit L25D19 1" PMT + 10x NIM amplifier + DRS4 Evaluation board

Noise power spectrum

Offline waveform analysis

Concept

Scan waveform w(t) and its derivatives $\dot{w}(t)$, $\ddot{w}(t)$ to identify region with pulse(s)

 $\hookrightarrow\! \textbf{Fit} \, waveform \, with \, pulse \, model$

Offline waveform analysis

Concept

D. Guffanti, N. Brast, M. Nieslony, H. Steiger, M. Wurm (JGU Mainz)

Preliminary MC Results

Hit time distribution

Clear prompt Čerenkov peak (Note effect of unresolved pile-up)

Preliminary MC Results

Hit time distribution

Clear prompt Čerenkov peak (Note effect of unresolved pile-up)

Bottom PMT array Cherenkov photons Scinilization photons All photons 10^{-2} 10^{-3} 5 10 15 20 25 20 25 30 35 40Time (ns)

Hit pattern

Čerenkov ring visible in prompt events

Excellent prospect for Čerenkov/Scintillation separation studies

Conceptual design

- Preliminary Monte Carlo simulation
- Analysis pipeline in place

Procurement, technical design, DAQ setup

- Electronics and PMT procurement in progress
- Setup technical drawing about to start
- DAQ software
- Event reconstruction (MiniBooNE concept)

Commissioning

(→>)

(1)

 (\rightarrow)

Expected after Summer

Next step: Beam test setup

Concept

- ton-scale setup for PS/SPS extracted beamline
- ▶ "back" photodetectors optimized for Č/S separation
- ▶ "side" photodetectors for scintillation studies

Physics

- ► Further characterization of WbLS
- ▶ Test of reconstruction algorithm
- Test particle ID (μ/e)

