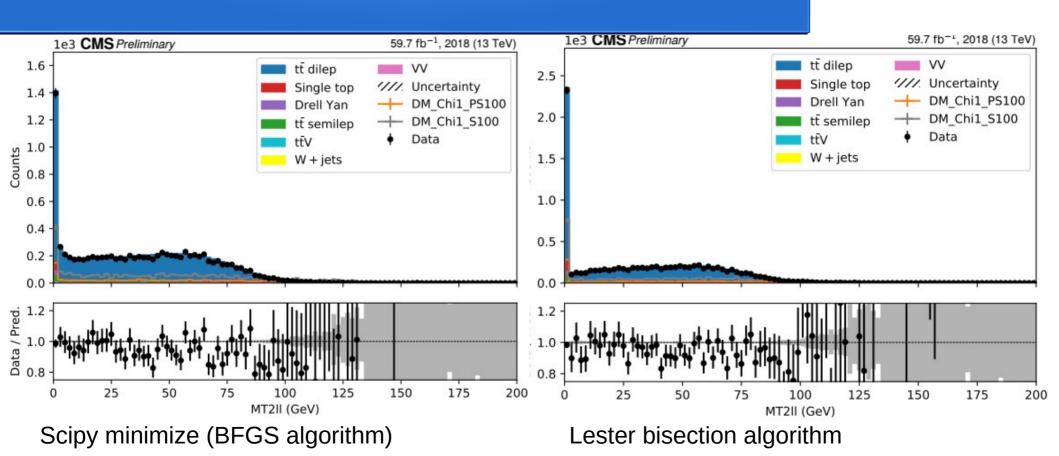
Z window and DY SFs

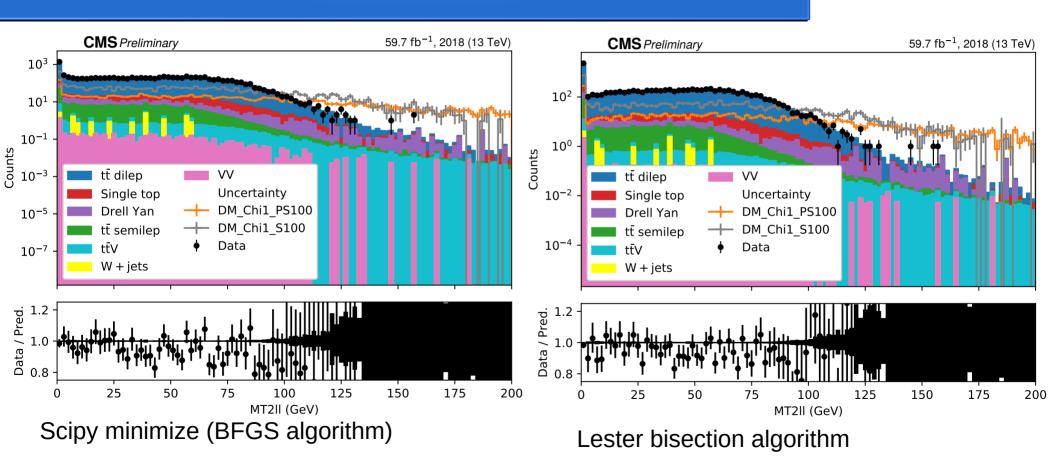
- Couldn't find any plots of the inside of the DY window
- However found a presentation from Henriette in February with DY SFs, and so calculated these to do a comparison
- These values were calculated with 2 leptons and >=2 jets, passing pt cuts, etc., and Mll>20 (after step 5 in top analysis)

DY SF comparison

	My DY SFs	Afiq's thesis (2016)	Henriette's presentation (11/02/20)
LO ee	1.133	1.22	1.07 (2018)
LO emu	1.124	1.203	1.10 (2018)
LO mumu	1.113	1.186	1.12 (2018)
NLO ee	1.006	-	0.98 (2017)
NLO emu	0.978	-	1.01 (2017)
NLO mumu	0.992	-	1.04 (2017)


MT2II

- Tried to implement MT2II, as there was a suggestion to cut on MT2II>40 GeV so the other region can be used as a semileptonic CR
- This proved a bit trickier than anticipated as the minimisation is difficult: initially tried using scipy, however this is quite slow, and also potentially inaccurate
- Then borrowed some code from Cedric to import the Lester bisection algorithm (which is written in C++), which is faster and more stable


$$m_{\mathrm{T2}}^{2}(\vec{p}_{\mathrm{T}}^{\;\ell_{i}},\vec{p}_{\mathrm{T}}^{\;\ell_{j}},\vec{p}_{\mathrm{T}}^{\;\mathrm{miss}}) \equiv \min_{\vec{q}_{\mathrm{T}}^{\;1} + \vec{q}_{\mathrm{T}}^{\;2} = \vec{p}_{\mathrm{T}}^{\;\mathrm{miss}}} \left\{ \max \left[m_{\mathrm{T}}^{2}(\vec{p}_{\mathrm{T}}^{\;\ell_{i}},\vec{q}_{\mathrm{T}}^{\;1}), m_{\mathrm{T}}^{2}(\vec{p}_{\mathrm{T}}^{\;\ell_{j}},\vec{q}_{\mathrm{T}}^{\;2}) \right] \right\}$$

(Equation from arXiv:1611.09841)

MT2II

MT2II (log scale)

