Jon Butterworth, Martin Habedank, Priscilla Pani

DESY. 2HDMa Conitur

Overall picture

general topic of my PhD project: search for Dark Matter in signatures with jets
$\rightarrow \quad \rightarrow \mathrm{MET}+$ jet search perfect match
("Search for new phenomena in events with an
energetic jet and large missing transverse
momentum using the ATLAS detector")
but: "inconvenient" schedule for me
$(\rightarrow$ paper about to be published)

Overall picture

general topic of my PhD project: search for Dark Matter in signatures with jets
$\rightarrow \quad \rightarrow \mathrm{MET}+$ jet search perfect match
("Searci'i for new phenomena in. events with an energetic jet anu' !arge missing transverse momentum usiry the AİL. 4 S detector")
but: "insunvenient" schedule for mo
$i \rightarrow$ paper about to be published)
$\rightarrow \quad \rightarrow$ unfolded MET+jets measurement
("Unfolded $\mathrm{p}_{\mathrm{T}}^{\text {miss }}+$ jets differential cross-section
measurement")
much more convenient schedule: about to request EdBoard

Overall picture

Priscilla very experienced with 2HDM+pseudoscalar model
general topic of my PhD project: search for Dark Matter in signatures with jets
$\rightarrow \quad \rightarrow$ MET+jet search perfect match
("Searci'i for new phenomena in. events with an energetic jet anu' !arqe miissing transverse momentum usir.y the AİL. 4 S detector")
but: "iñunvenient" schedule for mo
$i \rightarrow$ paper about to be published)
$\rightarrow \quad \rightarrow$ unfolded MET+jets measurement
("Unfolded $\mathrm{p}_{T}{ }^{\text {miss }}+$ jets differential cross-section
measurement")
much more convenient schedule: about to request EdBoard

Overall picture

Priscilla very experienced with $\mathbf{2 H D M}+$ pseudoscalar model
general topic of my PhD project: search for Dark Matter in signatures with jets
$\rightarrow \quad \rightarrow \mathrm{MET}+$ jet search perfect match ("Searcli, for new phenomena in events with an energetic jet anu' !arge missing transverse momentum using the Ait L. 4 S detector")
but: "incunvenient" schedule for me (\rightarrow paper about to be published)
$\rightarrow \quad \rightarrow$ unfolded MET+jets measurement
("Unfolded $\mathrm{p}_{T}{ }^{\text {miss }}+\mathrm{j}$ ets differential cross-section measurement")
much more convenient schedule: about to request EdBoard

Contur

tool for "exploring the sensitivity of unfolded collider measurements to BSM models"

Overall picture

Priscilla very experienced with 2HDM+pseudoscalar model
general topic of my PhD project: search for Dark Matter in signatures with jets
$\rightarrow \quad \rightarrow \mathrm{MET}+$ jet search perfect match ("Searci'i for new phenomena in. events with an energetic jet anu' !arge missing transverse momentum usir.y the AİL. Δ S detector")
but: "insunvenient" schedule for mo $i \rightarrow$ paper about to be published)
$\rightarrow \quad \rightarrow$ unfolded MET+jets measurement
("Unfolded p_{T} miss + jets differential cross-section measurement")
much more convenient schedule: about to request EdBoard

Contur

tool for "exploring the sensitivity of unfolded collider measurements to BSM models"

Overall picture

general topic of my PhD project: search for Dark Matter in signatures with jets
$\rightarrow \quad \rightarrow$ MET+jet search perfect match ("Searcli, for new phenomena in events with an energetic jet anu' !arge missing transverse momentum using the Ait LAS detector") but: "incunvenient" schedule for me (\rightarrow paper about to be published)
$\rightarrow \quad \rightarrow$ unfolded MET+jets measurement
("Unfolded $\mathrm{p}_{T}{ }^{\text {miss }}+\mathrm{j}$ ets differential cross-section measurement")
much more convenient schedule: about to request EdBoard

Priscilla very experienced with 2HDM+pseudoscalar model

Contur

tool for "exploring the sensitivity of unfolded collider measurements to BSM models"

2HDM+a model

Two-Higgs-doublet model with a pseudoscalar mediator

- pseudoscalar mediator that couples to DM and SM particles
- additional second Higgs doublet (\rightarrow "2HDM")
- to avoid strong constrains by Higgs boson couplings
- ratio of vacuum expectation values: $\tan \beta$
- mediator-SM coupling through mixing of mediator and second Higgs doublet
- a-A mixing angle: $\sin \theta$

Particles

* we usually fix $m_{H \pm}=m_{H}=m_{A}$

Contur - Constraints On New Theories Using Rivet

Contur in general

- LHC precision measurements largely model-independent
- provided as Rivet routines
- most measurements in agreement with SM
\rightarrow use those as pure SM-background for BSM model scans
disadvantages
- not as fast or sensitive as dedicated searches
- cannot claim discovery

advantages

- can cover broad range of signatures and models
- can set limits on New Physics and indicate where (not) to investigate further

$$
\rightarrow \text { paper } \rightarrow \text { webpage } \rightarrow \text { code }
$$

Starting point - ATLAS limit

chosen parameter region:

- $m_{A}=m_{H \pm}=m_{H}$
- $m_{x}=10 \mathrm{GeV}$
- $\sin \theta=0.35$
- $\sin (\beta-a)=1 \rightarrow$ alignment limit (lightest mass eigenstate has SM Higgs couplings)
- $\tan \beta=1$

Contur results - m_{A} scan

1. generate BSM events with \rightarrow Herwig
2. check where significant number of events would have entered fiducial phase of LHC measurements \rightarrow Contur

Contur results - m_{A} scan

1. generate BSM events with $\rightarrow \underline{\text { Herwig }}$
2. check where significant number of events would have entered fiducial phase of LHC measurements \rightarrow Contur

> dedicated searches

$m_{A}-m_{a}$ scan

S © E E 	

Contur results - m_{A} scan

1. generate BSM events with $\rightarrow \underline{\text { Herwig }}$
2. check where significant number of events would have entered fiducial phase of LHC measurements \rightarrow Contur

$M_{a}(\mathrm{GeV})$

m_{A} scan - contributing measurements

m_{A} scan - contributing measurements

m_{A} scan - contributing measurements

4-lepton production
cross-section

at $7,8,13 \mathrm{TeV}$ with ATLAS

m_{A} scan - contributing measurements

4-lepton production
cross-section

$p_{T}{ }^{\text {miss }}+$ jets cross section measurements at 13 TeV with ATLAS [1], 0 -lepton SUSY search at 13 TeV with ATLAS [2]

m_{A} scan - exemplary explanation of sensitivity

m_{A} scan - exemplary explanation of sensitivity

Contur results - m_{A} scan

chosen parameter region:

- $m_{A}=m_{H \pm}=m_{H}$
- $m_{x}=10 \mathrm{GeV}$
- $\sin \theta=0.35$
- $\sin (\beta-a)=1 \rightarrow$ alignment limit (lightest mass eigenstate has SM Higgs couplings)
- $\tan \beta=1$

Contur results - m_{A} scan

chosen parameter region:

- $m_{A}=m_{H \pm}=m_{H}$
- $m_{x}=10 \mathrm{GeV}$
- $\sin 0=0.05 \rightarrow \sin \theta=0.70$
- $\sin (\beta-\alpha)=1 \rightarrow$ alignment limit (lightest mass eigenstate has SM Higgs couplings)
- $\tan \beta=1$

What do we expect for larger sin$\theta ?$

$$
\begin{aligned}
& L \supset \sum_{f=t, b, \tau} x_{f} \cdot f \bar{f}(A \cos \theta-a \sin \theta)+w_{x} \chi \bar{\chi}(A \sin \theta-a \cos \theta) \\
& \Gamma(a \rightarrow g g) \propto \sin ^{2} \theta
\end{aligned}
$$

$\sin \theta=0.70$: "maximum mixing"
\rightarrow for $\mathrm{t}, \mathrm{b}, \mathrm{T}, \mathrm{g}$: coupling to a increases, coupling to A decreases \rightarrow production cross section of a increases
\rightarrow for DM: coupling to a decreases, coupling to A increases

What do we expect for larger sin$\theta ?$

$$
\begin{aligned}
& L \supset \sum_{f=t, b, \tau} x_{f} \cdot f \bar{f}(A \cos \theta-a \sin \theta)+w_{x} \chi \bar{\chi}(A \sin \theta-a \cos \theta) \\
& \Gamma(a \rightarrow g g) \propto \sin ^{2} \theta
\end{aligned}
$$

$\sin \theta=0.35$
$\sin \theta=0.70$: "maximum mixing"
\rightarrow for $\mathrm{t}, \mathrm{b}, \mathrm{T}, \mathrm{g}$: coupling to a increases, coupling to A decreases \rightarrow production cross section of a increases
\rightarrow for DM: coupling to a decreases, coupling to A increases

$m_{a}=100.0 \mathrm{GeV}, \sigma_{p, p \rightarrow X, u}$

What do we get?

$\sin \theta=0.35$
$\sin \theta=0.70$

ATLAS_7_4L

ATLAS_7_4L

ATLAS_7_4L

ATLAS_13_METJET

ATLAS 2016 |1458270
(0-lepton SUSY)
$\sin \theta=0.35$

ATLAS_13_METJET

ATLAS 201611458270
(0-lepton SUSY)
$\sin \theta=0.35$

Summary of $\sin \theta=0.70$ changes

Summary of $\sin \theta=0.70$ changes

Summary of $\sin \theta=0.70$ changes

schematic, not for scale (duh!)

Summary

$\sin \theta=0.35$
$\sin \theta=0.70$

Caveats

1. roughly speaking:
$\sin \theta \uparrow \Rightarrow$ particle width $\Gamma \uparrow$
$\mathrm{m}_{\mathrm{A}, \mathrm{H}} \uparrow \Rightarrow$ particle width $\Gamma \uparrow$

$\sin \theta$	$\mathrm{m}_{A}\left(\Gamma=20 \% \mathrm{~m}_{A}\right)$
0.35	2 TeV
0.70	1 TeV

so we have to take $\sin \theta=0.70$ results with a grain of salt (the higher m_{A}, the more) as narrow-width approximation becomes imprecise
2. Herwig doesn't support $\mathbf{2} \rightarrow \mathbf{3}$ processes
\rightarrow right now implementing interface between MadGraph \& Contur to investigate impact of $2 \rightarrow 3$ processes

The End

Backup

ATLAS_8_GAMMA

ATLAS_2014_11306615
signtature: $\mathrm{h} \rightarrow \mathrm{\gamma} \mathrm{\gamma}$

$g_{\text {haa }} \propto x \cdot\left(M_{A}^{2}-M_{a}^{2}\right) \cdot \sin ^{2} \theta+y \cdot \cos ^{2} \theta$
\rightarrow coupling $\propto \sin ^{2} \theta$; increase with higher $m_{A}-m_{a}$ mass difference

Charged Higgs

$\Gamma\left(H^{ \pm} \rightarrow a W^{ \pm}\right) \propto \sin ^{2} \theta$
$m_{a}=100 \mathrm{GeV}$

$\operatorname{BRs}\left(\mathrm{H}^{ \pm}\right)$

$\sin \theta=0.35$
$m_{*}=100.0 \mathrm{GeV}, \mathrm{BR} s\left(H^{+}\right)$

$\sin \theta=0.70$
$m_{a}=100.0 \mathrm{GeV}, \mathrm{BR} s\left(H^{+}\right)$

Heavy CP-even Higgs H

$\Gamma(H \rightarrow a Z) \propto \sin ^{2} \theta$
\rightarrow branching ratio increases
$\sin \theta=0.35$
$m_{a}=100.0 \mathrm{GeV}, \mathrm{BRs}(H)$

$\sin \theta=0.70$
$m_{a}=100.0 \mathrm{GeV}, \mathrm{BRs}(H)$

Heavy CP-odd Higgs A

$\Gamma(A \rightarrow a h) \propto\left(m_{A}^{2}-m_{a}^{2}\right) \sin \theta \cos \theta$
$\sin \theta=0.35$
BRs(A)
$m_{v}=100.0 \mathrm{GeV}, \mathrm{BR} \times(A)$

$\sin \theta=0.70$
BRs(A)
$n_{0}=100.0 \mathrm{GeV}, \operatorname{BRs}(A)$

Coupling to fermions - branching ratios

