

Probing Dirac vs Majorana nature of neutrinos @ $CE\nu NS$ experiments

Chandan Hati

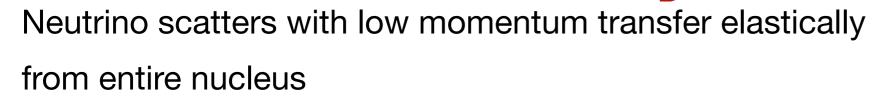
Based on arXiv:2109:XXXX (to appear soon!) in collaboration with

Patrick D. Bolton, Frank F. Deppisch, Kåre Fridell, Julia Harz,

Suchita Kulkarni

DESY THEORY WORKSHOP 21 - 24 September 2021

Introduction


recoi

CE_{\nuNS}: pronounced "sevens"

Coherent Elastic Neutrino-Nucleus Scattering

First proposed 47 years ago!

Freedman '74

$$E_{\nu} \lesssim \frac{hc}{R_N} \sim \mathcal{O}(10 \text{ MeV})$$
 for coherence

The nuclear recoil energy:
$$E_r^{\rm max} = \frac{2E_\nu^2}{M_A} \sim \mathcal{O}({\rm KeV})$$

SM allowed process but hard to observe due to small nuclear recoil energy!

Experiments

First observation in Aug 2017 by

COHERENT Experiment

Akimov et al. Science 2017

Spallation Neutron Source @ Oak Ridge

Threshold:
A few keV

NUCLES Experiment @ CHOOZ

Threshold: 10's of eV!

funded, work ongoing

Other experiments:

- CONUS (MPIK)
- MINER (US)
- RICOCHET (US+FR)
- CONNIE (int.)

Beyond Standard Model: motivation

The only laboratory evidence of BSM physics so far:

neutrino oscillations => neutrino masses

Dirac vs Majorana generation mechanism

Why $CE\nu NS$?

The physics potential of $CE\nu NS$ is enormous!

Explore fundamental neutrino interactions and properties

focus of this talk!

Precision tests of electroweak theory

Nuclear form factors

Dark matter

Supernovae

Reactor physics

New detector technology ++

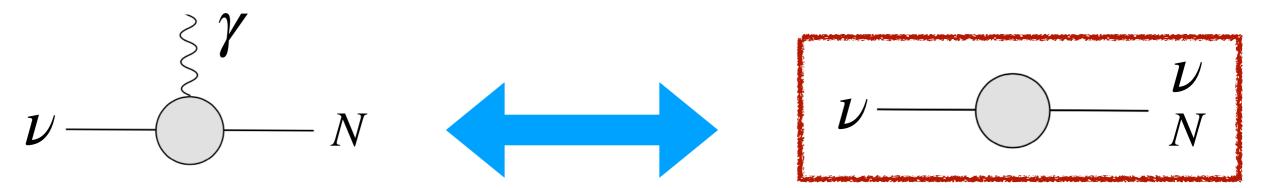
ullet u magnetic moment

 \bullet ν oscillation parameters

non-standard interactions

Coloma et al., PRL 119 201804 (2017) Magill et al., PRD 98 115015 (2018) Miranda et al., JHEP 07 103 (2019) Schwetz et al., 2105.09699 ++

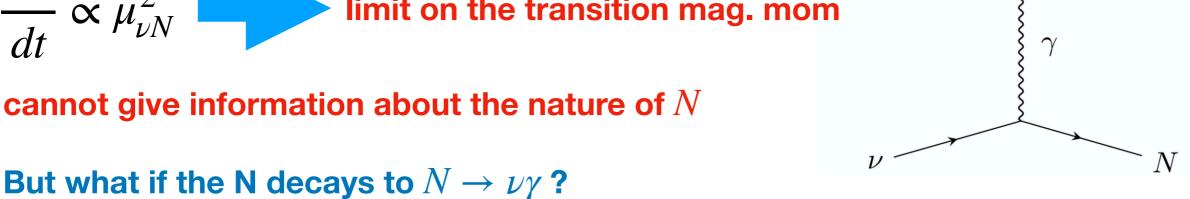
Coloma et al., PRD 94 055005 (2017) Coloma et al., PRD 96 115007 (2017) Denton et al., arXiv:2008.01110 (2020) Esteban et al. JHEP 06 055 (2019) ++


Bhupal Dev et al., 1907.00991 Coloma et al., JHEP 02 023 (2020) Khan et al., PRD 104 015019 (2021)

Key BSM ingredients

sterile neutrino + active sterile transition magnetic moment

$$\mathcal{L} \supset \mu_{\nu N}^{\alpha} \bar{\nu}_{\alpha L} \sigma_{\mu \nu} N_R F^{\mu \nu} + \text{h.c.}$$



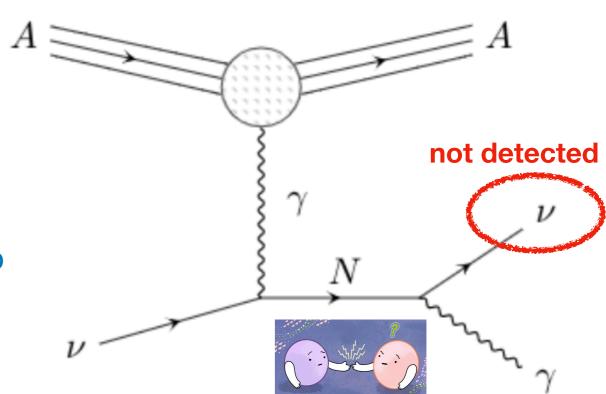
correlation with active neutrino mass (more on this later!)

Primakoff upscattering process $\nu A \rightarrow NA$

$$\frac{d\sigma}{dt} \propto \mu_{\nu N}^2$$
 limit on the transition mag. mom

cannot give information about the nature of N

"Shining" CE ν NS



Three body distributions can give a lot more information

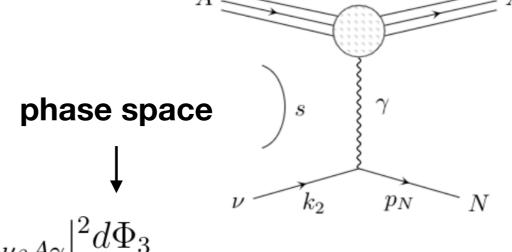
For $M_N < E_{\nu}$, N can be produced on-shell: resonant enhancement

The outgoing ν can be a neutrino/anti-neutrino for Majorana N

The amplitude for the process looks different for Dirac vs Majorana ${\cal N}$

Experimentally very exciting!

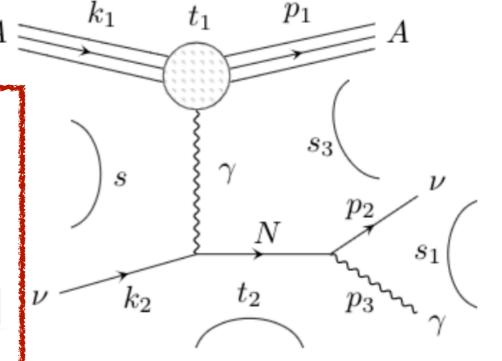
Realistic experimental possibility to detect the outgoing photon


Coincidence of nuclear recoil and outgoing photon can lead to excellent background rejection

The kinematics

The kinematics and differential distribution is more involved than simple upscattering

Technical details in paper!



$$d^5 \sigma_{\nu_{\alpha} A \to \nu_{\beta} A \gamma} = \frac{1}{2(s - m_A^2)} \frac{1}{2} \sum_{\text{spins}} |\mathcal{M}_{\nu_{\alpha} A \to \nu_{\beta} A \gamma}^{\text{D(M)}}|^2 d\Phi_3$$

Dirac vs Majorana

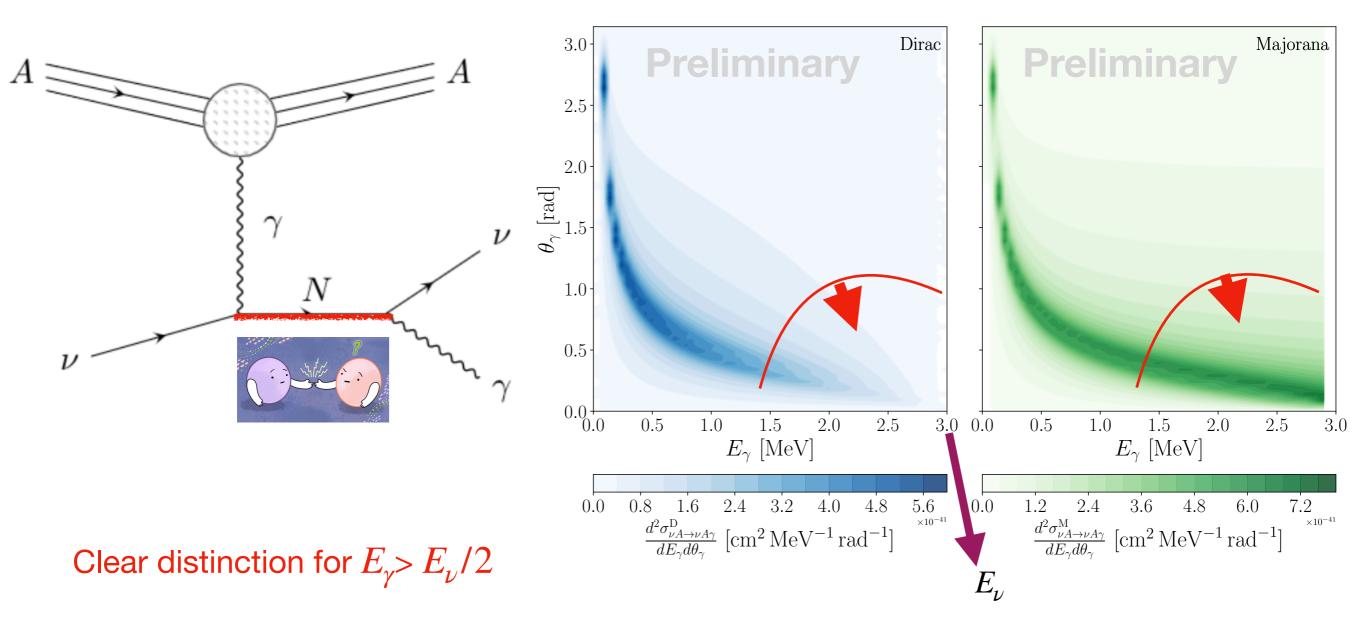
$$i\mathcal{M}_{\mathrm{Dirac}} \propto \left[\bar{u}_{\nu_{\beta}} \sigma_{\lambda \xi} P_{R} \epsilon^{\lambda *} p_{3}^{\xi} i (p_{N} + m_{N}) \sigma_{\mu \rho} P_{L} q^{\rho} u_{\nu_{\alpha}} \right]$$

$$i\mathcal{M}$$
 Maj $\propto \left[\bar{u}_{
u_{eta}} \sigma_{\lambda \xi} (P_R - P_L) \epsilon^{\lambda *} p_3^{\xi} i (p_N + m_N) \sigma_{\mu \rho} P_L q^{
ho} u_{
u_{lpha}}
ight]$

integrating over the other free phase space parameters => differential distributions in desired lab frame variables

$$\frac{d^2 \sigma_{\nu_{\alpha} A \to \nu_{\beta} A \gamma}^{D(M)}}{dE_{\gamma} d\theta_{\gamma}} \quad \frac{d \sigma_{\nu_{\alpha} A \to \nu_{\beta} A \gamma}^{D(M)}}{dE_{R}}$$

Details in the "shine": Dirac vs Majorana sterile

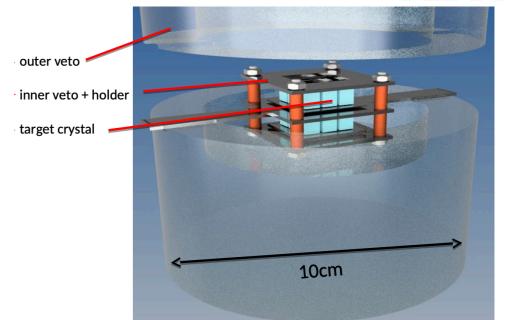


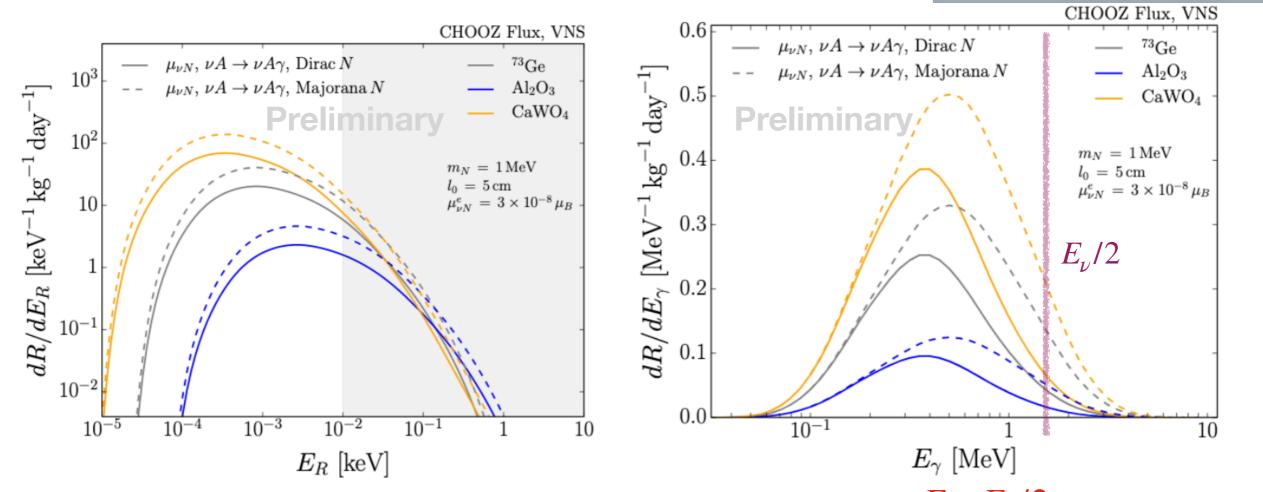
$$E_{\nu} = 3 \text{ MeV}$$

$$m_N = 1 \text{ MeV}$$

Benchmark choices:
$$E_{\nu}=3~{\rm MeV}$$
 $m_N=1~{\rm MeV}$ $\mu_{\nu N}^e=3\times 10^{-8}\mu_B$

For a realistic experiment: integrated over the flux + sterile decay width from detector dimensions


Different reactor neutrino energy -> access to wider sterile mass range

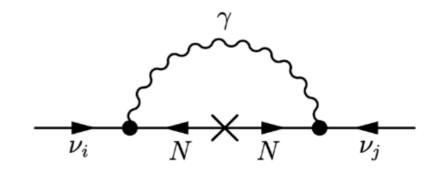

Coincidence for BG rejection: realistic @ experiments like NUCLEUS

Taking NUCLEUS @ CHOOZ as a case study

- 10g for NUCLEUS-Phase 1 (funded, work ongoing)
- Future 1kg upgrade possibility
- Sensitivity to photon energy: 1 keV to 10 MeV

Dirac case photon energy distribution falls off very quickly after $E_{\gamma} > E_{\nu}/2$

NUCLEUS can provide an energy resolution: 50-100 keV @MeV energies


Insight into the nature of active neutrinos?

For a distribution consistent with Majorana ${\cal N}$

Majorana N + a transition dipole moment => majorana nature of active neutrino

$$m_{
u}^{ extbf{Maj}} \sim \mu_{
u N}^2 rac{\Lambda^2 m_N^{ extbf{Maj}}}{16\pi^2}$$

Complimentary to $0\nu\beta\beta$ decay and LNV rare meson decays

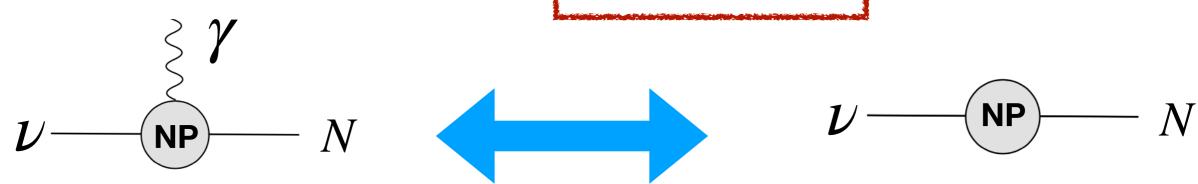
Depending on the event rate distribution for $\nu A \to \nu A \gamma$, limits can be drawn on the $\mu_{\nu N}$ vs $m_N^{\mbox{Maj}}$ plane:

hints for active neutrino mass mechanisms

For a distribution consistent with Dirac N

no conclusive statement can be made about the nature of ν

Hints on the neutrino mass mechanism?



$\nu A \rightarrow \nu A \gamma$ distribution consistent with Majorana sterile

a transition magnetic moment via a loop diagram with heavy NP (Λ)=>

A Dirac mass term. $m_{\nu N} \, \bar{\nu}_L N_R$

$$\frac{\mu_{\nu N}}{\mu_B} \approx \frac{m_e \, \delta m_{\nu N}}{\Lambda^2}$$

sizeable mass mixing between active and sterile states => transition magnetic moment induced through loop diagrams involving charged leptons

$$\frac{|\mu_{\nu N}|}{\mu_B} = \frac{3m_{\nu N}m_e}{16\pi^2} \frac{G\mathbf{F}}{\sqrt{2}} \sim 10^{-13} \left(\frac{m_{\nu N}}{1 \text{ MeV}}\right)$$

Pal 1981, Shrock1982

too tight to explain a signal for radiative $CE\nu NS$ for canonical type I seesaw!

preferred scenarios:

"Voloshin" mechanism Inverse seesaw etc.

("unnatural" cancellation with tree level mass term)

Hints on the neutrino mass mechanism?

$\nu A ightarrow u A \gamma$ distribution consistent with Dirac sterile

Basis of independent operators at d=6

Bell et al. PRL 2005

$$\begin{split} \mathcal{O}_{1}^{(6)} &= g_{1} \bar{L} \tilde{H} \sigma^{\mu\nu} N_{R} B_{\mu\nu} \\ \mathcal{O}_{2}^{(6)} &= g_{2} \bar{L} \tau^{a} \tilde{H} \sigma^{\mu\nu} N_{R} W_{\mu\nu}^{a} \\ \mathcal{O}_{3}^{(6)} &= \bar{L} \tilde{H} N_{R} \left(H^{\dagger} H \right) \end{split} \qquad \qquad \frac{\mu_{\nu N}}{\mu_{B}} = -16 \sqrt{2} \left(\frac{m_{e} v}{\Lambda^{2}} \right) \left[C_{1}^{(6)}(v) + C_{2}^{(6)}(v) \right] \\ \delta m_{\nu N} &= -C_{3}^{(6)}(v) \frac{v^{3}}{2\sqrt{2} \Lambda^{2}} \end{split}$$

operator mixing=>

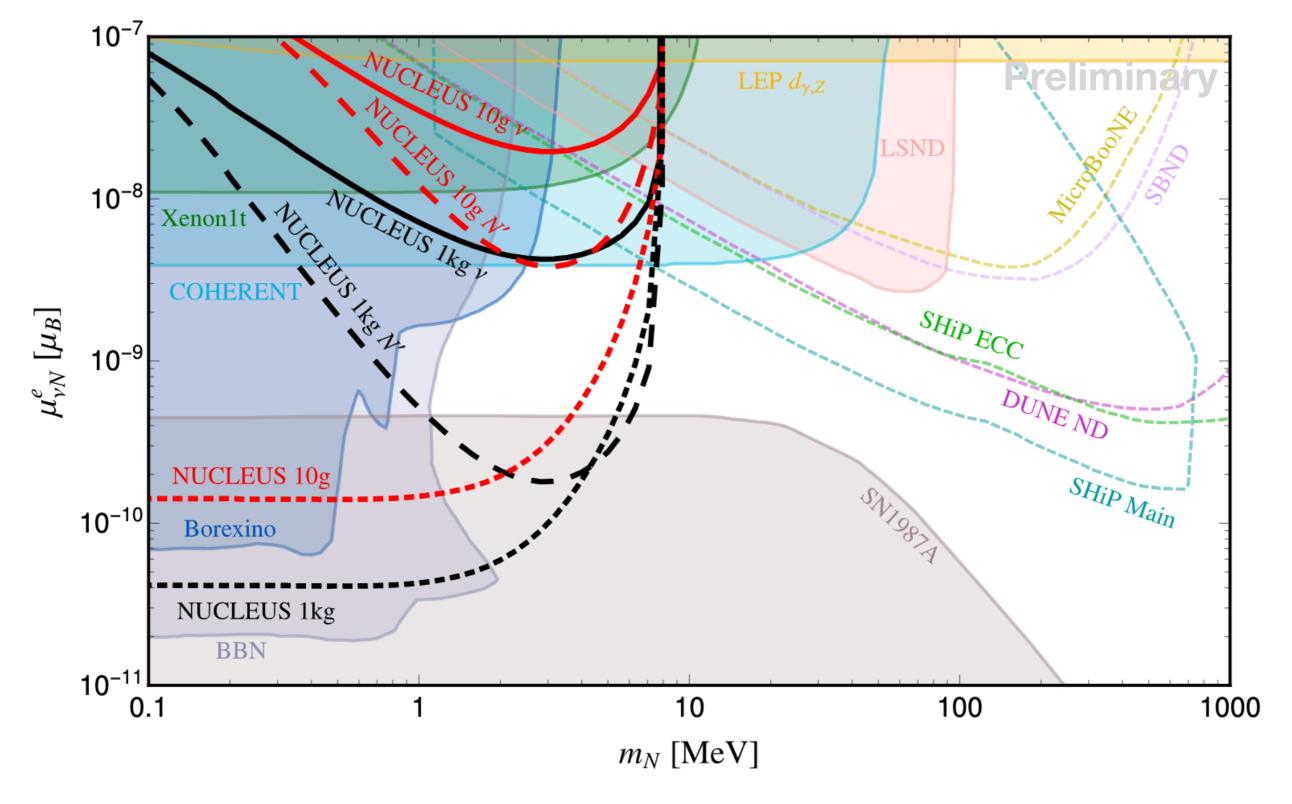
$$\frac{|\mu_{\nu N}|}{\mu_B} \sim 10^{-15} \left(\frac{\delta m_{\nu N}}{1~{\rm eV}}\right)$$
 for $\Lambda = 1$ TeV

Again: non-trivial mechanism/symmetry needed to get large mag. mom. without blowing up ν mass

Concluding remarks

Radiative $CE\nu NS$ ($\nu A \rightarrow \nu A\gamma$) distributions can give very exciting insights into neutrino mass in the presence of active-sterile transition magnetic moment.

Dirac vs Majorana sterile states lead to different and distinguishable distributions for outgoing photon


Unprecedented sensitivity within reach in CE ν NS experiments in near future

Realistic possibility to probe such distributions @ $CE\nu NS$ experiments like NUCLEUS

Backup-I

limits from different experiments or astrophysical processes (solid lines) projected exclusion limits from future experiments (dashed lines)