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Need for (weakly supervised) anomaly detection

> No clear BSM signal at the LHC

> |s SUSY still “just around the corner”
or rather something else?

> Most searches are not universal

> More models than searches

We need searches that are
v Sensitive
v Model agnostic

Disclaimer: here bump hunt strategies, for Autoencoders see next talk by Alessandro Morandini




Classic bump hunt

> FI1t a bump over a smooth
background

a.u.4
> Only few assumptions needed he

> Signal localized in one
observable

> (Almost) No Monte Carlo
needed

/

Sy

> Sensitive to many models
> Higgs discovery

> Limited sensitivity

Improve by taking additional observables x into account




Classification Without Labels (Cwola)

Collins, Howe, Nachman [1805.02664, 1902.02634]
Metodiev, Nachman, Thaler [1708.02949]

> Assume x and m are uncorrelated
> Sideband: p(z|SB) = p(z|bkg)

> Signal region: p(z|SR) = fae p(x]sig) + foke p(x|bkg)

> Train classifier on SR vs SB
and learn (2ISR)
_ b{x
B#) = /sB)
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Classification Without Labels (Cwola)

> Assume x and m are uncorrelated
> Sideband: p(z|SB) = p(z|bkg)

> Signal region: p(z|SR) = fe p(x[sig)  + foke p(x|bkg)

> Train classifier on SR vs SB
and learn

R(x) = 2ZI5R) SB  vs SR

- p(z[SB) Ty

-~

R [T
."'1".*;-‘.;@"!:
L P

Breaks down with correlation




Anomaly Detection with Density Estimation
(AN ODE) Nachman, Shih [2001.04990]

> LLearn conditional probability distributions directly
pin(x|m € SR) and pout(z|m € SB) |
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Anomaly Detection with Density Estimation
(AN ODE) Nachman, Shih [2001.04990]

> LLearn conditional probability distributions directly
pin(x|m € SR) and pout(z|m € SB) |

> Interpolate pg, INto SR and calculate |
~ DPin(x|m € SR) HHWHWW
R(z|m € SR) = poms(@]m € SR)
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Anomaly Detection with Density Estimation
(ANODE)

> LLearn conditional probability distributions directly
pin(x|m € SR) and pout(z|m € SB)

> Interpolate pg, INto SR and calculate

. SR | | | | Signal Region
R(x|m € SR) = Pin(z|m € SR) |

Background |

Pout (Jflm c SR) 103! 1 Signal

> Not much affected by mass-
correlation

Densities are difficult to learn




CATHODE (Classifying Anomalies Through
Outer Density Estimation)

> Combine the best of Cwola and ANODE |

1) Learn pout(x|m € SB) ey

2) a.u.“;‘\ é

3) T .

’ i
SB SB m
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CATHODE (Classifying Anomalies Through
Outer Density Estimation)

> Combine the best of Cwola and ANODE |
1) Learn pout(x|m € SB) T :

2) Interpolate to poys(zm € SR) =y
3) Sample from pgut (z|m € SR) 3

4) .
T,

SB i SR i SBm
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CATHODE (Classifying Anomalies Through
Outer Density Estimation)

> Combine the best of Cwola and ANODE
1) Learn pout(x|m € SB)

2) Interpolate to poui(z|m € SR) SR sampled vs SR data

T . _ B AR |

3) Sample from pgui(x|m € SR) A o

4) Train classifier on samples

vs data in SR

v" Robust against mass correlation
v Need to learn only one density




Dataset

> LHC Olympics R&D dataset

* Slgnali Wi — X (= qq)Y (= qq)
mw: — 3.9 TeV, mx — 500 GeV, my =— 100 GeV

> Background: QCD dijet

> Observables
> Dijet mass: m g
> Masses and subjettiness ratios of the two jets:

_ J1 Jo
mJ17 AmJ — mJ2 - mJ1, 7-217 7-21
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CATHODE Results

> Significance Improvement Characteristic: €s/+/€p

Signal Region
Main results 20.0 —
1) Max SIC of 14 L  CaTHODE
g 150 CWola
2) Close to Idealized | &= =='ClohE
Anomaly Detector | 300
(assumes perfect 5 75
background model) | & so;
3) Better than Cwola | .| [o.... N — e .
and ANODE >0 0lzsignalE‘fficc]i.(‘:ncy (True S(;iitive Rate)0l8 -0
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CATHODE Results: low S/B

S/VB
. 2.14 1.35 1.02 0.68 0.510.340.17
> Still good o | | —
performance for _
—»— Supervised
lOW S/B —— |dealized AD |

—>»— CATHODE

> Breakdown at
S/B = 0.2% for
all methods

Maximum Significance Improvement

0.60 0.40 0.30 0.20 0.15 0.10 0.05
S/B (%)
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Conclusion

CATHODE is a new bump hunt method
Combines the best of Cwola and ANODE

> Robust against correlations

> No need to learn density in SR

Achieves maximal significance enhancement €5/4/€, of
14 on LHC Olympics R&D dataset

Performance closely matches idealized Anomaly detector
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Conclusion

CATHODE is a new bump hunt method
Combines the best of Cwola and ANODE

> Robust against correlations

> No need to learn density in SR

Achieves maximal significance enhancement €5/4/€, of
14 on LHC Olympics R&D dataset

Performance closely matches idealized Anomaly detector

Thank you!
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BACKUP
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Oversampling

. Signal Region
> More data Is better! 2010 —
17.5 4 — 200k
— 800k

> Cwola has about 60k §so-
bkg events for training £

> CATHODE can
oversample bkg events

CWolLa
random
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Signal Efficiency (True Positive Rate)
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Mass correlation

> |ntroduce artificial
shift:

my, — my, +0.1mjy
Am — Am+0.1mjy

> As expected Cwol.a
breaks down

> CATHODE still
performs very well

Significance Improvement
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0.0

Signal Region, Shifted Dataset

Supervised
Idealized AD
CATHODE

Signal Efficiency (True Positive Rate)
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