Long-lived particles and portal EFTs

partially based on arXiv:2105.06477

Jan Hajer

Department of Physics, Universität Basel

DESY Theory Workshop 2021: Bright Ideas for a Dark Universe

Long-lived particles (LLPs)

LLPs in the SM

- Many particles of the SM are long-lived
- Some are even stable on detector scales

LLPs

LLPs in the SM

- Many particles of the SM are long-lived
- Some are even stable on detector scales

Portals to hidden sectors

- Many SM extensions feature hidden sectors
- Often motivated by DM candidates
- A key signature of such models are LLPs

Prime examples

- Axion-like particles (ALPs)
- Heavy Neutral Leptons (HNLs)
 Right Handed Neutrinos (RHNs)
- Hidden U(1) / New gauge bosons

Charged pion

- Decay via weak interactions

Decay extremely off-shell
$$\Gamma_{\pi^+} \propto g_W^2 \bigg(\frac{m_\pi}{m_W}\bigg)^4 m_\pi$$

Charged pion

- Decay via weak interactions
- Decay extremely off-shell

$$\Gamma_{\pi^+} \propto g_W^2 \left(\frac{m_\pi}{m_W}\right)^4 m_\pi$$

Neutron

- Proton and neutron are almost mass degenerate due to isospin
- Decay extremely off-shell

$$\Gamma_n \propto g_W^2 \left(rac{\Delta_{np}}{m_W}
ight)^4 \Delta_{np} \; , \quad \Delta_{np} = m_n - m_p$$

Charged pion

- Decay via weak interactions
- Decay extremely off-shell

$$\Gamma_{\pi^+} \propto g_W^2 \left(rac{m_\pi}{m_W}
ight)^4 m_\pi$$

Muon

- Flavour changing neutral current
- Lepton flavour only violated by neutrino masses and Yukawa couplings ${\sf BR}(\mu o e \gamma) \propto 10^{-13}$

Neutron

- Proton and neutron are almost mass degenerate due to isospin
- Decay extremely off-shell

$$\Gamma_n \propto g_W^2 \left(\frac{\Delta_{np}}{m_W} \right)^4 \Delta_{np} \; , \quad \Delta_{np} = m_n - m_p$$

$$\pi^+ o \mu^+
u_\mu$$

$$n o pe\overline{
u}_e$$

$$\mu o e \gamma$$
 $\mu o U_{i\mu} o U_{ie}^* ext{ } e$

Charged pion

- Decay via weak interactions
- Decay extremely off-shell

$$\Gamma_{\pi^+} \propto g_W^2 \left(\frac{m_\pi}{m_W}\right)^4 m_\pi$$

Neutron

- Proton and neutron are almost mass degenerate due to isospin
- Decay extremely off-shell

$$\Gamma_n \propto g_W^2 \left(\frac{\Delta_{np}}{m_W}\right)^4 \Delta_{np} \; , \quad \Delta_{np} = m_n - m_p$$

Muon

- Flavour changing neutral current
- Lepton flavour only violated by neutrino masses and Yukawa couplings $\mathsf{BR}(\mu \to e \gamma) \propto 10^{-13}$

Generically

- Off-shell decay
- Small mass splitting
- Small coupling (hierarchy or loop suppression)

$$\Gamma \propto \lambda^2 \left(\frac{m}{M}\right)^n m$$

Axion like particles (ALP)

The ALP mass and interaction terms

$$\mathcal{L} \supset \frac{1}{2} m_a^2 a^2 + \frac{\alpha_s}{8\pi} \frac{a}{f_a} \widetilde{G} G + c \frac{\alpha_{\mathsf{EM}}}{8\pi} \frac{a}{f_a} \widetilde{F} F$$

With a model dependent constant c.

Widths

$$\Gamma_g = k \frac{\alpha_s^2}{32\pi^3} \frac{m_a^3}{f_a^2}, \qquad \Gamma_\gamma = c^2 \frac{\alpha_s^2}{32\pi^3} \frac{m_a^3}{f_a^2}$$

With NLO correction factor k.

SM particles and ALP decay constant f_a/GeV

Heavy neutral leptons (HNLs)

Right handed neutrinos

$$\mathcal{L}_{
u_R} = -y_{ai} \overline{\ell}_a \varepsilon \phi \nu_{Ri} - \frac{1}{2} \overline{\nu_{Ri}^c} M_{ij} \nu_{Rj} + \text{h.c.}$$

 y_{ai} Yukawa coupling M_{ii} Majorana mass

Electroweak symmetry breaking

Dirac mass $m_{ai} = v y_{ai}$

Seesaw mechanism

$$m_{
u} = -m_{ai}M_{ij}^{-1}m_{bj}^T = - heta_{ai}M_{ij} heta_{bj}^T$$
 $heta_{ai} = m_{aj}M_{ij}^{-1}$

produces tiny SM neutrino masses

Decay width

$$\Gamma_N pprox rac{G_F^2}{8\pi^3} | heta_a|^2 M^5$$

SM particles and HNL coupling $|\theta|^2$

Portal effective theories (PETs)

Effective theories of Standard Model fields

Effective field theories

- includes all fields of interest
- consists of all operators allowed by symmetry of the theory
- non-renormaliseable operators encode heavy new physics (NP)

SM and heavy NP

EFT fields and symmetries

SMEFT, HEFT, LEFT, NRQCD, HQET, χPT, ...

SM operators

 O_n^{SM}

Effective theories of Standard Model fields

Effective field theories

- includes all fields of interest
- consists of all operators allowed by symmetry of the theory
- non-renormaliseable operators encode heavy new physics (NP)

SM and heavy NP

EFT fields and symmetries

SMEFT, HEFT, LEFT, NRQCD, HQET, χPT, . . .

SM operators

 O_n^{SM}

Standard Model EFT

- consists of all SM fields
- operators compatible with SM gauge group
- used to constrain NP models
- see also Higgs EFT

Light EFT

- heavy SM bosons are integrated out
- generalises Fermi's four fermion theory
- SM (with extensions) at low energies

Effective theories of Standard Model fields

Effective field theories

- includes all fields of interest
- consists of all operators allowed by symmetry of the theory
- non-renormaliseable operators encode heavy new physics (NP)

SM and heavy NP

EFT fields and symmetries

SMEFT, HEFT, LEFT, NRQCD, HQET, χPT, ...

SM operators

 O_n^{SM}

Standard Model EFT

- consists of all SM fields
- operators compatible with SM gauge group
- used to constrain NP models
- see also Higgs EFT

Light EFT

- heavy SM bosons are integrated out
- generalises Fermi's four fermion theory
- SM (with extensions) at low energies

Chiral perturbation theory

- exploits U(3) flavour symmetry
- light meson interactions

Heavy quark EFT

- exploits mass hierarchy within meson
- interactions of mesons with one heavy quark

(p)NRQCD

- interactions of mesons with two heavy quarks
- treats heavy mesons non-relativistically

Portal effective field theories

Hidden sector

- contains messenger fields
- can entail a complicated secluded sector

Messenger fields

- interact feebly with the SM
- forms with the SM fields the portal operators

Secluded sector

- fields which are not directly coupled to SM
- additional interactions of the messengers
- mass generation mechanism for messenger

SM and heavy NP

EFT fields and symmetries

SMEFT, HEFT, LEFT, NRQCD, HQET, χ PT, ...

SM operators

 O_n^{SM}

Portal operators

 $O_{nm}^{\text{portal}} = O_n^{\text{SM}} O_m^{\text{hidden}}$

Hidden sector with light NP

Messenger fields

Secluded fields

Additional fields not directly interacting with the SM

Hidden operators

 O_m^{hidden}

PET framework

Portal currents

SM operators

$$O_n^{\mathsf{SM}} = O_n^{\mathsf{SM}}(q, \ell, \gamma, g, \dots)$$

Hidden operators

$$O_m^{\mathsf{hidden}} = O_m^{\mathsf{hidden}}(s_i, \xi_j, v_k^{\mu}, \dots)$$

Form portal operators

$$O_{nm}^{\text{portal}} = O_n^{\text{SM}} O_m^{\text{hidden}}$$

Can be collected in Portal currents

$$J_n^{\text{portal}} = \sum_m O_{nm}^{\text{portal}}$$

Capturing the portal interactions of the SM

$$\mathcal{L}^{\mathsf{portal}} = \sum_{n} J_{n}^{\mathsf{portal}} O_{n}^{\mathsf{SM}}$$

For example: The axial anomaly

$$\mathcal{L}_Q^{ heta} = - heta rac{\mathsf{tr}_c \, \widetilde{G}_{\mu
u} G^{\mu
u}}{(4\pi)^2}$$

 $G_{\mu\nu}$ Gluon field strength θ QCD vacuum angle

In terms of current θ and operator w

$$\mathcal{L}_Q^{ heta} = - heta w \qquad \qquad w = rac{\mathsf{tr}_c \, \widetilde{G}_{\mu
u} G^{\mu
u}}{(4\pi)^2}$$

Scalar axial current S_{θ} contains NP

$$\theta \rightarrow \Theta = \theta + S_{\theta}$$

E.g. Axion like particle a

$$S_{\theta} = c_{\theta} \frac{a}{f_a}$$

More complicated models

$$S_{\theta} = c_{\theta} \frac{a}{f_2} + \dots$$

Portal SMEFT operators

Renormaliseable operators

	d	Higgs	Yukawa + h.c.	Fermions	Gauge bosons
Si	3	$s_i H ^2$			
S,	4	$s_i s_j H ^2$			
$\xi_a + \text{h.c.}$	4		$\xi_a \ell_b \widetilde{H}^\dagger$		
v^{μ}	4	$v_{\mu}v^{\mu} H ^{2}$ $\partial_{\mu}v^{\mu} H ^{2}$ $v^{\mu}H^{\dagger}\overrightarrow{D}_{\mu}H$		$v^{\mu} q^{\dagger}_{a} \overline{\sigma}_{\mu} q_{b}$ $v^{\mu} \overline{u}^{\dagger}_{a} \sigma_{\mu} \overline{u}_{b}$ $v^{\mu} \overline{d}^{\dagger}_{a} \sigma_{\mu} \overline{d}_{b}$ $v^{\mu} \ell^{\dagger}_{a} \overline{\sigma}_{\mu} \ell_{b}$ $v^{\mu} \ell^{\dagger}_{a} \overline{\sigma}_{\mu} \ell_{b}$	

Portal SMEFT operators

Renormaliseable operators

	d	Higgs	Yukawa + h.c.	Fermions	Gauge bosons
Si	3	$s_i H ^2$			
5,	4	$s_i s_j H ^2$			
$\xi_a + \text{h.c.}$	4		$\xi_a \ell_b \widetilde{H}^\dagger$		
$ u^{\mu}$	4	$v_{\mu}v^{\mu} H ^2$ $\partial_{\mu}v^{\mu} H ^2$ $v^{\mu}H^{\dagger}\overset{\frown}{D}_{\mu}H$		$v^{\mu} q^{\dagger}_{a} \overline{\sigma}_{\mu} q_{b}$ $v^{\mu} \overline{u}^{\dagger}_{a} \sigma_{\mu} \overline{u}_{b}$ $v^{\mu} \overline{d}^{\dagger}_{a} \sigma_{\mu} \overline{d}_{b}$ $v^{\mu} \ell^{\dagger}_{a} \overline{\sigma}_{\mu} \ell_{b}$ $v^{\mu} \epsilon^{\dagger}_{a} \sigma_{\mu} \overline{e}_{b}$	

Non-renormaliseable operators

		d	Higgs	${\sf Yukawa} + {\sf h.c.}$	Fermions	Gauge bosons
	S;	5	$s_i s_j s_k H ^2$ $s_i D^\mu H^\dagger D_\mu H$ $s_i H ^4$	$s_i q_a \overline{u}_b \widetilde{H}^\dagger$ $s_i q_a \overline{d}_b H^\dagger$ $s_i \ell_a \overline{e}_b H^\dagger$		$s_i G^a_{\mu\nu} G^{\mu\nu}_a$ $s_i W^a_{\mu\nu} W^{\mu\nu}_a$ $s_i B_{\mu\nu} B^{\mu\nu}$ $s_i G^a_{\mu\nu} \widetilde{G}^{\mu\nu}_a$ $s_i W^a_{\mu\nu} \widetilde{W}^{\mu\nu}_a$ $s_i B_{\mu\nu} \widetilde{B}^{\mu\nu}$
_	$\xi_a + \text{h.c.}$	5	$\xi_a \xi_b H ^2$	$\xi_a^\dagger \overline{\sigma}^\mu \ell_b D_\mu \widetilde{H}^\dagger$		$\xi_a \sigma^{\mu u} \xi_b B_{\mu u}$

Portal SMEFT currents

Portal Lagrangian

$$\mathcal{L}_{\mathsf{portal}} = \mathcal{L}_{\mathsf{EW}}^{H} + \mathcal{L}_{\mathsf{EW}}^{Y} + \mathcal{L}_{\mathsf{EW}}^{F} + \mathcal{L}_{\mathsf{EW}}^{V}$$
.

Individual parts

$$\begin{split} \mathcal{L}_{\text{EW}}^{H} &= S_{m}^{H} |H|^{2} + \frac{1}{2} S_{\lambda}^{H} |H|^{4} + S_{\kappa}^{H} D^{\mu} H^{\dagger} D_{\mu} H + \mathrm{i} V_{H}^{\mu} H^{\dagger} \vec{D}_{\mu} H \ , \\ \mathcal{L}_{\text{EW}}^{Y} &= \mathbf{S}_{m}^{e} \ell \overline{e} H^{\dagger} + \mathbf{S}_{m}^{d} q \overline{d} H^{\dagger} + \mathbf{S}_{m}^{u} q \overline{u} \vec{H}^{\dagger} + \Xi \ell \vec{H}^{\dagger} + \Xi_{\mu} \ell D^{\mu} \vec{H}^{\dagger} + \text{h.c.} \ , \\ \mathcal{L}_{\text{EW}}^{F} &= \mathbf{V}_{q}^{\mu} q^{\dagger} \overline{\sigma}_{\mu} q + \mathbf{V}_{\ell}^{\mu} \ell^{\dagger} \overline{\sigma}_{\mu} \ell + \mathbf{V}_{u}^{\mu} \overline{u}^{\dagger} \sigma_{\mu} \overline{u} + \mathbf{V}_{d}^{\mu} \overline{d}^{\dagger} \sigma_{\mu} \overline{d} + \mathbf{V}_{e}^{\mu} \overline{e}^{\dagger} \sigma_{\mu} \overline{e} \ , \\ \mathcal{L}_{\text{EW}}^{V} &= (S_{\omega}^{B} B_{\mu\nu} + S_{\theta}^{B} \widetilde{B}_{\mu\nu} + T_{\mu\nu}^{B}) B^{\mu\nu} + (S_{\omega}^{W} W_{\mu\nu} + S_{\theta}^{W} \widetilde{W}_{\mu\nu}) W^{\mu\nu} + (S_{\omega} G_{\mu\nu} + S_{\theta} \widetilde{G}_{\mu\nu}) G^{\mu\nu} \ . \end{split}$$

Portal SMEFT

- is at dimension 5 is encoded in 21 portal currents
- serves as starting point for construction of EFT for lower energies

Portal LEFT currents

After integrating out the heavy SM bosons

interactions are described by operators of dimension 5 + 2 = 7

QCD operators and portal currents

SM operator current
$$w = \operatorname{tr}_c \widetilde{G}_{\mu\nu} G^{\mu\nu} (4\pi)^{-2} \qquad \Theta = \theta + S_\theta \qquad \text{vacuum angle}$$

$$\Upsilon = \operatorname{tr}_c G_{\mu\nu} G^{\mu\nu} (4\pi)^{-2} \qquad \Omega = \frac{2\pi}{\alpha} + S_\omega \qquad \text{fine structure constant}$$

$$\boldsymbol{Q}_a^{\dot{a}} = q_a \overline{q}^{\dot{a}} \qquad \boldsymbol{M} = \boldsymbol{m} + \boldsymbol{S}_m \qquad \text{mass}$$

Gluon fields are normalised such that $D_{\mu} = \partial_{\mu} - \mathrm{i}\,G_{\mu}$.

Portal LEFT current Lagrangian

$$\mathcal{L}_Q = \Theta w - \Omega \Upsilon - \operatorname{tr}_f \boldsymbol{MQ}$$

The currents are constant in the SM but can contain dynamical NP contributions.

EW induced portal LEFT currents

Vector current interactions

 $d \rightarrow \bigotimes_{u} u^{\dagger}$

Electromagnetic dipole

 s^{\dagger} u^{\dagger} u $d \rightarrow \otimes$ u

Chromomagnetic dipole

QCD operators and portal currents

SM operator
$$m{Q}_{a}^{\mu}{}^{b}=q_{a}\sigma^{\mu}q^{b\dagger}$$
 $m{ar{Q}}_{a}^{\mu}{}^{\dot{b}}=ar{q}_{\dot{a}}^{\dagger}ar{\sigma}^{\mu}ar{q}^{\dot{b}}$ $m{Q}_{\mu\nu}{}^{\dot{a}}_{a}=q_{a}\sigma_{\mu\nu}ar{q}^{\dot{a}}$ $m{ ilde{Q}}_{a}^{\dot{a}}=q_{a}\sigma_{\mu\nu}G^{\mu\nu}ar{q}^{\dot{a}}$

current $oldsymbol{L}^{\mu}=oldsymbol{l}^{\mu}+oldsymbol{V}_{\!\!I}^{\mu} \ oldsymbol{R}^{\mu}=oldsymbol{r}^{\mu}+oldsymbol{V}_{\!\!I}^{\mu}$

 $oldsymbol{arGamma} = oldsymbol{\gamma} + oldsymbol{S}_{oldsymbol{\gamma}}$ LEFT current Lagrang

 $T^{\mu
u}= au^{\mu
u}+T^{\mu
u}_{ au}$

left-handed right-handed tensorial chromomagnetic

Electroweak contributions to the portal LEFT current Lagrangian

$$\delta \mathcal{L}_{O}^{\mathsf{EW}} = -\operatorname{tr}_{f}\left(m{L}^{\mu}m{Q}_{\mu} + m{R}^{\mu}\overline{m{Q}}_{\mu}
ight) - (4\pi v)^{-2}\operatorname{tr}_{f}\left(m{\Gamma}\widetilde{m{Q}} + m{T}^{\mu
u}m{Q}_{\mu
u} + \operatorname{\mathsf{h.c.}}
ight)$$

The SM parts of the currents are either constant or contain the photon contribution

Not shown here

4-quark operators

Portal LEFT operators

Scalar box diagram

Scalar penguin diagram

Fermionic penguin diagram

Quark flavour conserving operators

	d	Scalar	Vector	Gauge
Si	4	$s_i \overline{\psi} \psi$		
		$s_i s_j \overline{\psi} \psi$		s _i F _{μν} F ^{μν} s _i F _{μν} F ^{μν} s _i G _{μν} G ^{μν} s _i G _{μν} G ^{μν}
J	5			$s_i F_{\mu u} F^{\mu u}$
	Ŭ			$s_i G_{\mu\nu} G^{\mu\nu}$
				$s_i G_{\mu\nu} \widetilde{G}^{\mu\nu}$
	3	$\xi_a \nu$		
+	_			$\xi_a \overline{\sigma}_{\mu\nu} \nu F^{\mu\nu}$
h.c.	5		ξ	$\xi_a \overline{\sigma}_{\mu u} u F^{\mu u} \ \xi_a \overline{\sigma}_{\mu u} \xi_b F^{\mu u}$
v_{μ}	4		$v_{\mu} \; \psi^{\dagger} \overline{\sigma}^{\mu} \psi$	

Quark flavour violating operators

	d	Two quarks	Quark dipole	Four fermions
	6		$s_i F^{\mu\nu} \overline{d} \sigma_{\mu\nu} d \ s_i G^{\mu\nu} \overline{d} \sigma_{\mu\nu} d$	
S _i	7	s _i s _j s _k s _I dd		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ξ _a h.c	. 6	$\xi_a^\dagger \overline{\sigma}_\mu \ e \ d^\dagger \overline{\sigma}^\mu \iota \xi_a^\dagger \overline{\sigma}_\mu \ \nu \ d^\dagger \overline{\sigma}^\mu \iota \iota$	1	

Portal interactions of mesons

Portal LEFT

serves as starting point for portal EFTs of mesons

Interactions of light mesons with messengers

- Kaon decay into hidden sectors
- detectable e.g. in Kaon factories such as NA62

Meson decay into hidden sectors

See dedicated talk by Philipp Klose

in the same session

Portal chiral perturbation theory

Conclusion

- New Physics might be found in hidden sectors
- The messenger particle can easily be long-lived
- EFTs are designed to describe heavy New Physics
- We have extended EFTs of the SM to include also portals to hidden sectors

Rarita-Schwinger and Fierz-Pauli messengers

•		d	Higgs	Yukawa $+$ h.c.	Fermions	Gauge bosons
		4		$\xi^{\dagger}_{a\mu}\overline{\sigma}^{\mu}\ell_{b}\widetilde{H}^{\dagger}$		
	$egin{array}{l} \xi_{\mu}^{a} \ + \ h.c. \end{array}$	5	$\xi_{a\mu}\xi_b^\mu H ^2 \ \xi_{a\mu}\sigma^{\mu\nu}\xi_{b u} H ^2$	$egin{aligned} (\partial^{\mu}\xi_{a\mu})\ell_{b}\widetilde{H}^{\dagger} \ (\partial_{ u}\xi_{a\mu})\overline{\sigma}^{\mu u}\ell_{b}\widetilde{H}^{\dagger} \ & \xi_{a\mu}\ell_{b}D^{\mu}\widetilde{H}^{\dagger} \ & \xi_{a\mu}\overline{\sigma}^{\mu u}\ell_{b}D_{ u}\widetilde{H}^{\dagger} \end{aligned}$		$\xi_{a\mu}\xi_{b\nu}B^{\mu\nu}$ $\xi_{a\rho}\sigma^{\mu\nu}\xi_{b}^{\rho}B_{\mu\nu}$ $\xi_{a\mu}\sigma^{\mu\rho}\xi_{b}^{\nu}B_{\nu\rho}$ $\xi_{a\mu}\sigma^{\mu\rho}\xi_{b}^{\nu}\widetilde{B}_{\nu\rho}$ $\xi_{a\alpha}\sigma_{\mu}^{\rho}\xi_{b}^{\rho}B_{\nu\rho}\epsilon^{\alpha\beta\mu\nu}$
-		3				$t_{\mu u}B^{\mu u}$ $\widetilde{t}_{\mu u}B^{\mu u}$
_	$t_{\mu u}$	5	t ^{μν} D _μ H [†] D _ν Η τ̃ ^{μν} D _μ Η [†] D _ν Η (∂ _μ t ^{μν})(Η [†] Ö _ν Η)	$t^{\mu u}oldsymbol{q}_aoldsymbol{\sigma}_{\mu u}oldsymbol{d}_bH$	$(\partial^{\mu}t_{\mu\nu})q_{a}^{\dagger}\overline{\sigma}^{\nu}q_{b}$ $(\partial^{\mu}t_{\mu\nu})u_{a}^{\dagger}\sigma^{\nu}u_{b}$ $(\partial^{\mu}t_{\mu\nu})d_{a}^{\dagger}\sigma^{\nu}d_{b}$ $(\partial^{\mu}t_{\mu\nu})\ell_{a}^{\dagger}\overline{\sigma}^{\nu}\ell_{b}$ $(\partial^{\mu}t_{\mu\nu})e_{a}^{\dagger}\sigma^{\nu}e_{b}$ $(\partial^{\mu}\widetilde{t}_{\mu\nu})q_{a}^{\dagger}\overline{\sigma}^{\nu}q_{b}$ $(\partial^{\mu}\widetilde{t}_{\mu\nu})u_{a}^{\dagger}\sigma^{\nu}u_{b}$ $(\partial^{\mu}\widetilde{t}_{\mu\nu})d_{a}^{\dagger}\sigma^{\nu}u_{b}$ $(\partial^{\mu}\widetilde{t}_{\mu\nu})\ell_{a}^{\dagger}\sigma^{\nu}\ell_{b}$ $(\partial^{\mu}\widetilde{t}_{\mu\nu})\ell_{a}^{\dagger}\sigma^{\nu}\ell_{b}$ $(\partial^{\mu}\widetilde{t}_{\mu\nu})\ell_{a}^{\dagger}\sigma^{\nu}\ell_{b}$	$\begin{array}{c} t_{\mu\nu}\boldsymbol{G}^{\mu\rho}\boldsymbol{G}^{\nu}_{\rho} \\ \widetilde{t}_{\mu\nu}\boldsymbol{G}^{\mu\rho}\boldsymbol{G}^{\nu}_{\rho} \\ t_{\mu\nu}\boldsymbol{G}^{\mu\rho}\boldsymbol{G}^{\nu}_{\rho} \\ t_{\mu\nu}\boldsymbol{G}^{\mu\rho}\boldsymbol{G}^{\nu}_{\rho} \\ \widetilde{t}_{\mu\nu}\boldsymbol{W}^{\mu\rho}\boldsymbol{W}^{\nu}_{\rho} \\ t_{\mu\nu}\boldsymbol{W}^{\mu\rho}\boldsymbol{W}^{\nu}_{\rho} \\ t_{\mu\nu}\boldsymbol{W}^{\mu\rho}\boldsymbol{W}^{\nu}_{\rho} \\ \widetilde{t}_{\mu\nu}\boldsymbol{B}^{\mu\rho}\boldsymbol{B}^{\nu}_{\rho} \\ t_{\mu\nu}\boldsymbol{B}^{\mu\rho}\boldsymbol{B}^{\nu}_{\rho} \\ t_{\mu\nu}\boldsymbol{B}^{\mu\rho}\boldsymbol{B}^{\nu}_{\rho} \\ t_{\mu\nu}\boldsymbol{B}^{\mu\nu} \boldsymbol{H} ^{2} \\ \widetilde{t}_{\mu\nu}\boldsymbol{B}^{\mu\nu} \boldsymbol{H} ^{2} \end{array}$

References

- C. Arina, J. Hajer, and P. Klose (2021). 'Portal Effective Theories: A framework for the model independent description of light hidden sector interactions'. In: *JHEP* 9. DOI: 10.1007/JHEP09(2021) 063. arXiv: 2105.06477 [hep-ph]
- J. Alimena et al. (2020). 'Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider'. In: J. Phys. G 47.9, p. 090501. DOI: 10.1088/1361-6471/ab4574. arXiv: 1903.04497 [hep-ex]
- M. Drewes, J. Hajer, J. Klaric, and G. Lanfranchi (Jan. 2018). 'NA62 sensitivity to heavy neutral leptons in the low scale seesaw model'. In: JHEP 07, p. 105. DOI: 10.1007/JHEP07(2018) 105. arXiv: 1801.04207 [hep-ph]
- M. Drewes and J. Hajer (2020). 'Heavy Neutrinos in displaced vertex searches at the LHC and HL-LHC'. In: JHEP 02, p. 070. DOI: 10.1007/JHEP02(2020)070. arXiv: 1903.06100 [hep-ph]
- M. Chrząszcz, M. Drewes, and J. Hajer (2021). 'HECATE: A long-lived particle detector concept for the FCC-ee or CEPC'. In: *Eur. Phys. J. C* 81.6, p. 546. DOI: 10.1140/epjc/s10052-021-09253-y. arXiv: 2011.01005 [hep-ph]