Simulating and unfolding LHC events with generative networks

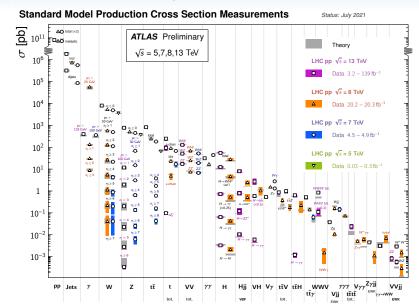
DESY Theory Workshop

Bright ideas for a dark universe

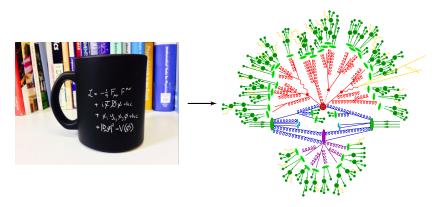
Anja Butter

ITP, Universität Heidelberg

Theory in an era of data

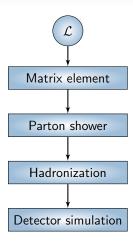


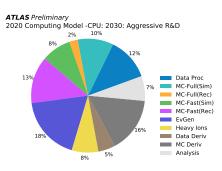
First principle based simulations



Need precise simulations tools

Precision simulations with limited resources

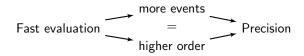




Speed = Precision

How can ML help increasing precision

- ML 2.0 Generative models
 - → Can we simulate new data?

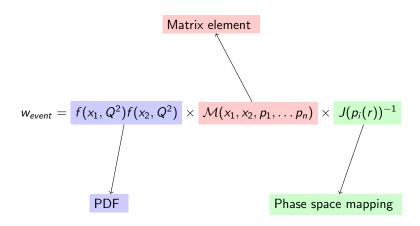


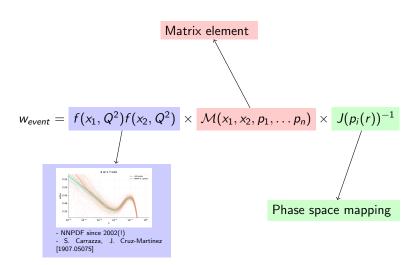


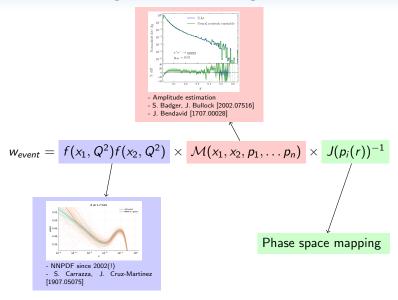
- 1. Generate phase space points
 - 2. Calculate event weight

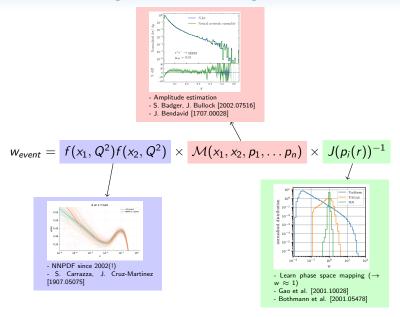
$$w_{event} = f(x_1, Q^2) f(x_2, Q^2) \times \mathcal{M}(x_1, x_2, p_1, \dots p_n) \times J(p_i(r))^{-1}$$

3. Unweighting via importance sampling \rightarrow optimal for $w \approx 1$

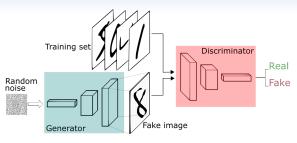








Generative Adversarial Networks



Discriminator
$$[D(x_T) \rightarrow 1, D(x_G) \rightarrow 0]$$

$$L_D = \left\langle -\log D(x) \right\rangle_{x \sim P_{\mathit{Truth}}} + \left\langle -\log(1 - D(x)) \right\rangle_{x \sim P_{\mathit{Gen}}} \rightarrow -2\log 0.5$$

Generator
$$[D(x_c) \rightarrow 1]$$

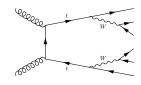
$$L_G = \left\langle -\log D(x) \right\rangle_{x \sim P_{Gen}}$$

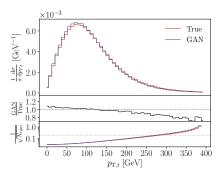
⇒ Equilibrium

⇒ New statistically independent samples

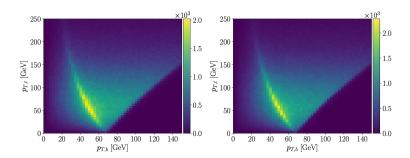
How to GAN LHC events [1907.03764]

- $t\bar{t} \rightarrow 6$ quarks
- 18 dim output
 - external masses fixed
 - no momentum conservation
- + Flat observables ✓
- Systematic undershoot in tails [10-20% deviation]





Correlations

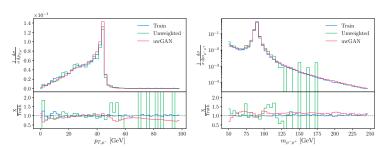


Training on weighted events

Low unweighting efficiencies \rightarrow bottleneck before training

 \rightarrow Train on weighted events

$$\rightarrow L_D = \left\langle -w \log D(x) \right\rangle_{x \sim P_{Touth}} + \left\langle -\log(1 - D(x)) \right\rangle_{x \sim P_{Gen}}$$



Populates high energy tails

Large amplification wrt. unweighted data!

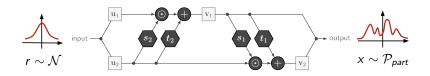
Short summary

GANs can ..

- → learn event distributions and correlations
 - ightarrow amplify underlying statistics
 - ightarrow train on weighted events

- → How to achieve precision?
- \rightarrow How to quantify uncertainties?

Invertible networks

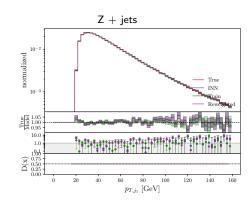


- + Bijective mapping
- + Fast evaluation in both directions
 - + Tractable Jacobian
- + Enable correction for perfect precision
- + Extendable to Bayesian invertible networks
 - + Trainable on either density or samples

Preliminary

Inclusive Z+jets production

- INN easy trainable, powerful baseline
- Challenges:
 - Variable number of jets
 - Topological holes
 - 1% precision in correlations
 - Associated uncertainties

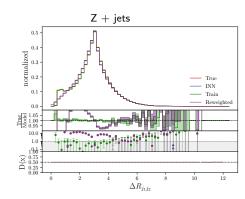


arXiv:2110.XXXXX

Preliminary

Inclusive Z+jets production

- INN easy trainable, powerful baseline
- · Challenges:
 - Variable number of jets
 - Topological holes
 - 1% precision in correlations
 - Associated uncertainties

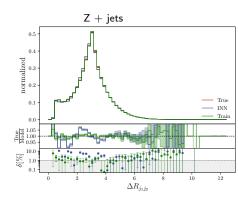


arXiv:2110.XXXXX

Preliminary

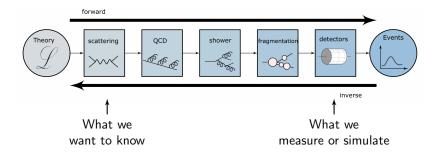
Inclusive Z+jets production

- INN easy trainable, powerful baseline
- · Challenges:
 - Variable number of jets
 - Topological holes
 - 1% precision in correlations
 - Associated uncertainties



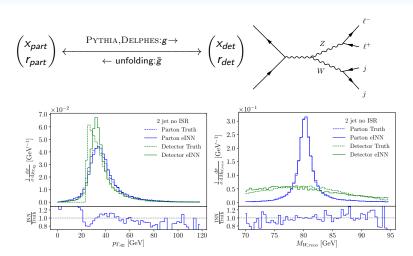
arXiv:2110.XXXXX

Can we invert the simulation chain?



wish list: ☐ multi-dimensional ☐ bin independent ☐ statistically well defined

Inverting detector effects



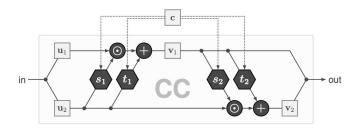
multi-dimensional \checkmark bin independent \checkmark statistically well defined ?

Taking a different angle

Given an event x_d , what is the probability distribution at parton level? \rightarrow sample over r, condition on x_d

$$x_p \xleftarrow{g(x_p, f(x_d))} \to r$$

$$\leftarrow \text{unfolding: } \bar{g}(r, f(x_d))$$

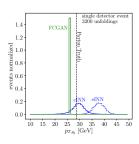


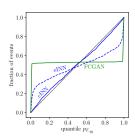
Condition INN on detector data [2006.06685]

$$x_p \xleftarrow{g(x_p, f(x_d))}{\leftarrow \text{unfolding: } \bar{g}(r, f(x_d))} r$$

Minimizing the posterior

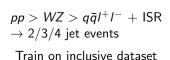
$$L = \langle 0.5 || \bar{g}(x_p, f(x_d)) \rangle ||_2^2 - \log |J| \rangle_{x_p \sim P_p, x_d \sim P_d} - \log p(\theta)$$

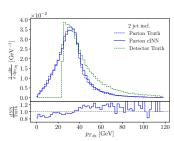


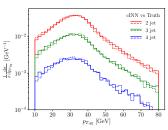


multi-dimensional \checkmark bin independent \checkmark statistically well defined \checkmark

Inverting the full event







We can use ML ...

... to enable precision simulations in forward direction

... to turn weighted into unweighted events

... to invert the simulation chain statistically

... for fun and precision :)

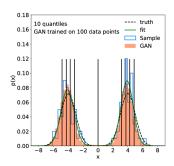
BACK UP

What is the statistical value of GANned events?[2008.06545]

- Camel function
- Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

$$\mathsf{MSE}^* = \sum_{j=1}^{\mathit{N}_{\mathsf{quant}}} \left(\mathit{p}_j - \frac{1}{\mathit{N}_{\mathsf{quant}}} \right)^2$$

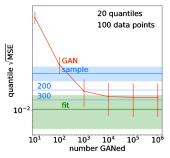


What is the statistical value of GANned events?[2008.06545]

- Camel function
- Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

$$\mathsf{MSE}^* = \sum_{j=1}^{\mathit{N}_{\mathsf{quant}}} \left(\mathit{p}_j - \frac{1}{\mathit{N}_{\mathsf{quant}}} \right)^2$$

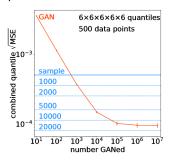


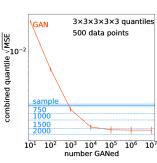
 $\rightarrow \text{Amplification factor } 2.5$

 $\mathsf{Sparser}\;\mathsf{data}\to\mathsf{bigger}\;\mathsf{amplification}$

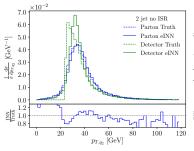
Amplification

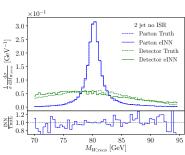
5-dim sphere



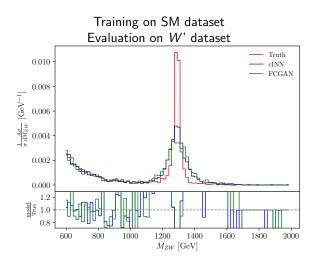


Noise extended INN

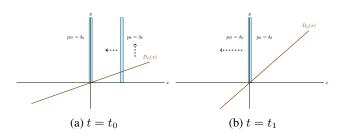




Model dependence



The GAN challenge or Why do we need regularization?



Solutions: Additional loss or restricted network parameters

Improving GAN training

Solutions

- Regularization of the discriminator, eg. gradient penalty [Ghosh, Butter et al., ...]
- Modified training objective:
 - Wasserstein GAN (incl. gradient penalty) [Lin et al., Erdmann et al., ...]
 - Least square GAN (LSGAN) [Martinez et al., ...]
 - MMD-GAN [Otten et al., ...]
 - MSGAN [Datta et al., ...]
 - Cycle GAN [Carazza et al., ...]
- Use of symmetries [Hashemi et al., ...]
- Whitening of data [Di Sipio et al., ...]
- Feature augmentation [Alanazi et al., ...]