by Alexey Kivel

Institute of Physics, Gutenberg University Mainz alkivel@uni-mainz.de

Together with Julien Laux and Felix Yu

DESY: Bright ideas for a dark universe 2021 September 24, 2021

Alexey Kivel

Introduction

contribution

Recer

Introduction

Strong CP-problem: Why is $\bar{\theta} \lesssim 10^{-10}$ so small?

1977 : Peccei-Quinn mechanism [9] introduce a dynamical

solution that relaxes $ar{ heta}$

1977/78 : Weinberg-Wilzcek axion [12, 13]

1979-81 : KSVZ [7], DFSZ [4]

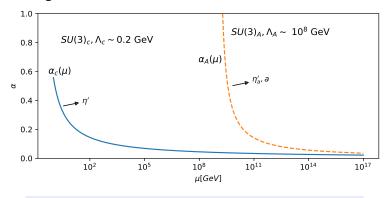
1985 : dynamical axion[3]: axion results as a composite state

2018 : Agrawal, Howe : non-trivial embedding of QCD leads to extra contributions from UV-instantons[1]

2018-20: New (high quality) axion models with large mass,

i.e. Gaillard et al. : SU(6) Color unification [5]

Alexey Kivel


Introduction

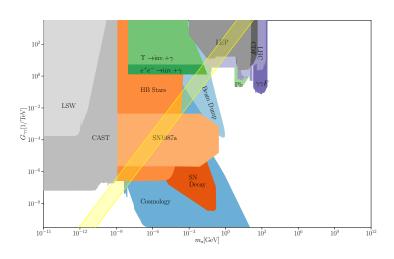
Instanton

Recen

Introduction

axion quality problem: sensitivity to anomalous symmetry breakings at *all* scales

How do (small size) UV-instantons influence phenomenology of an $axion/\eta'$?


Alexey Kivel

Introduction

Instanton

Recent

Introduction

$$g_{a\gamma\gamma}\sim \alpha/f_a, \quad \textit{m}_a^2f_a^2\sim \Lambda^4$$

Alexey Kivel

Introduction

Instanton contributions

Recen

Instanton contributions

- U(1)-problem and large η' mass: solved by additional determinantal term due to instanton background [10]
- ightarrow determinantal terms are included into pseudoscalar potential to achieve a correct mass matrix [8]

Instead we treat the axion as a phase of the determinantal term to derive the correct mixing behaviour and correct instanton sensitivity of the axion

Alexey Kivel

Introduction

Instanton contribution

Recent

Recent Models

Focusing on Gaillard et al. Color Unification model [5], we derive the following axion potential:

$$\begin{split} -V = & m_u v^3 \cos \left(\frac{\pi^0}{F_{\pi^0}} + \frac{\eta'}{F_{\eta'}} \right) + m_d v^3 \cos \left(-\frac{\pi^0}{F_{\pi^0}} + \frac{\eta'}{F_{\eta'}} \right) \\ & + \frac{v_{\text{diag}}^3 v^9}{K^8} \cos \left(2\frac{\phi_2}{F_a} + 2\frac{\eta'}{F_{\eta'}} \right) \\ & + \frac{v_{\text{diag}}^3 v^6 m_u \Lambda_u^2}{K^8} \cos \left(2\frac{\phi_2}{F_a} + \frac{\eta'}{F_{\eta'}} \right) \\ & + \frac{v_{\text{diag}}^3 v^6 m_d \Lambda_d^2}{K^8} \cos \left(2\frac{\phi_2}{F_a} + \frac{\eta'}{F_{\eta'}} - \frac{\pi^0}{F_{\pi^0}} \right) \\ & + K' v_{\text{diag}}^3 \cos \left(2\frac{\phi_2}{F_a} \right) + K_{\text{diag}} v_{\text{diag}}^3 \cos \left(2\frac{\phi_2}{F_a} + \sqrt{6}\frac{\phi_1}{F_a} \right). \end{split}$$

Alexey Kivel

Introduction

Instanton contribution

Recent

Recent Models

The corresponding mass matrix is

M =

$$\begin{pmatrix} \frac{4}{F_{\sigma}^{2}}(\Lambda_{\rm SSI}^{4} + \Lambda_{\rm diag}^{4}) & \frac{1}{F_{\sigma}^{2}}2\sqrt{6}\Lambda_{\rm diag}^{4} & 0 & 0 \\ \frac{1}{F_{\sigma}^{2}}2\sqrt{6}\Lambda_{\rm diag}^{4} & \frac{6}{F_{\sigma}^{2}}(\Lambda_{\rm diag}^{4} + 4\Lambda_{\eta'}^{4} + 2\mu\Lambda_{\rm inst}^{3}) & \frac{2}{F_{\sigma}F_{\eta'}}(4\Lambda_{\eta'}^{4} + 2\mu\Lambda_{\rm inst}^{3}) & 0 \\ 0 & \frac{2}{F_{\sigma}F_{\eta'}}(4\Lambda_{\eta'}^{4} + 2\mu\Lambda_{\rm inst}^{3}) & \frac{1}{F_{\sigma}^{2}}(m_{+}v^{3} + 4\Lambda_{\eta'}^{4} + 2\mu\Lambda_{\rm inst}^{3}) & \frac{-1}{F_{\pi}0F_{\eta'}}m_{-}v^{3} \\ 0 & 0 & \frac{1}{F_{\pi}0F_{\eta'}}m_{-}v^{3} & \frac{1}{F_{\pi}^{2}}(m_{+}v^{3} + 2\mu\Lambda_{\rm inst}^{3}) \end{pmatrix} .$$

Alexey Kivel

Introduction

Instanton contribution

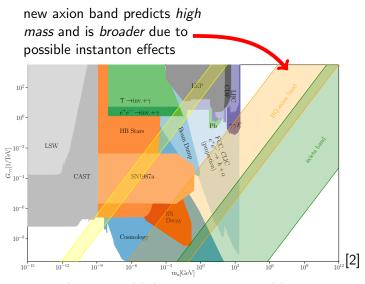
Recent

New scaling relations:

$$m_a^2 F_a^2 = 6(m_{a,0}^2 F_a^2 + \Lambda_d^4) - \frac{6\Lambda_d^8}{\Lambda_{SSI}^4} + \mathcal{O}\left(\frac{1}{\Lambda_{SSI}^5}\right)$$
 $m_{\eta_a'}^2 F_{\eta_a'}^2 = 4(\Lambda_{SSI}^4 + \Lambda_d^4) + \mathcal{O}\left(\frac{1}{\Lambda_{SSI}^5}\right)$

New e.m. coupling depending on the axion eigenvector v_a :

$$g_{a\gamma\gamma} = rac{lpha}{2\pi F_a} \left(rac{E}{N} - c_\chi'(v_a)
ight), \qquad c_\chi' > c_\chi = 1.92(4)$$


Alexey Kivel

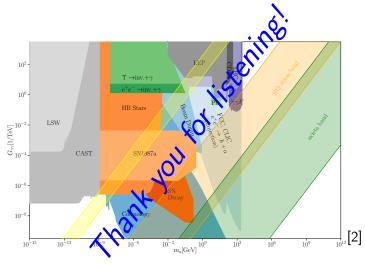
Introduction

Instanton

Recent

Recent models: results

 $\Lambda_d=10$ TeV, $\Lambda_{\mathsf{SSI}}=0.1$ to 100 TeV


Alexey Kivel

Introduction

Instanton

Recent

Recent models: results

 $\Lambda_d=10$ TeV, $\Lambda_{\mathsf{SSI}}=0.1$ to 100 TeV

Alexey Kivel

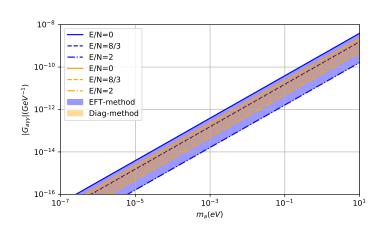
Backup

Backup: Vanilla QCD-axion

The results are to first order in the limit $F_a \gg 0$, $m_u \approx m_d$

$$m_{\pi^0}^2 = rac{m_+ v^3 + 2\mu \Lambda_{
m inst}^3}{F_{\pi^0}^2}, \ m_{\eta'}^2 = rac{m_+ v^3 + 4\Lambda_{\eta'}^4 + 2\mu \Lambda_{
m inst}^3}{F_{\eta'}^2},$$

$$m_a^2 F_a^2 = \begin{cases} \frac{m_{\pi^0}^2 F_{\pi^0}^2}{4} \left(1 - \frac{m_{\pi^0}^2 F_{\pi^0}^2}{m_{\eta'}^2 F_{\eta'}^2} \right) + \cdots &, m_q \to 0 \\ \frac{Z}{(1+Z)^2} m_{\pi^0}^2 F_{\pi^0}^2 + \cdots &, \Lambda_{\eta'} \to \infty \end{cases}$$

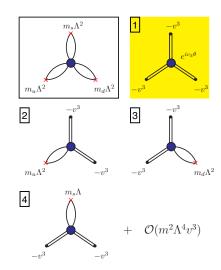

$$m_a \approx 0.866(5) \text{eV} \left(\frac{10^7 \text{GeV}}{F_a} \right)$$

Alexey Kivel

Backup

$$G_{A\gamma\gamma} = \frac{\alpha}{2\pi F_a} \left(\frac{E}{N} - c_{\chi} \right),$$

$$c_{\chi} = 1.57(7)$$
, EFT-framework [11]: $c_{\chi} = 1.92(4)$



Alexey Kivel

Backup

Backup:instanton diagrams usual axion

from [8, 6]

Backup: Cross Check

resulting mass matrix: [8, 6])

$$\begin{pmatrix} \frac{1}{F_{a}^{2}} (\Lambda_{\eta'}^{4} + 2\mu\Lambda_{\text{inst}}^{3}) & \frac{-2}{F_{a}F_{\eta'}} (\Lambda_{\eta'}^{4} + \mu\Lambda_{\text{inst}}^{3}) & 0 \\ \frac{-2}{F_{a}F_{\eta'}} (\Lambda_{\eta'}^{4} + \mu\Lambda_{\text{inst}}^{3}) & \frac{1}{F_{\eta'}^{2}} (m_{+}v^{3} + 4\Lambda_{\eta'}^{4} + 2\mu\Lambda_{\text{inst}}^{3}) & \frac{-1}{F_{\pi^{0}}F_{\eta'}} m_{-}v^{3} \\ 0 & \frac{-1}{F_{\pi^{0}}F_{\eta'}} m_{-}v^{3} & \frac{1}{F_{\pi^{0}}^{2}} (m_{+}v^{3} + 2\mu\Lambda_{\text{inst}}^{3}) \end{pmatrix}$$

$$m_{+} = (m_{u} + m_{d}), \qquad m_{-} = (m_{d} - m_{u}), \qquad \Lambda_{\eta'}^{4} = \frac{v^{9}}{K^{5}},$$
 $\Lambda_{\text{inst}}^{3} = \frac{L^{2}}{K^{2}}v^{3}, \qquad m_{u}\Lambda_{u}^{2} + m_{d}\Lambda_{d}^{2} = \mu L^{2}$

Alexey Kivel

Backup

Backup: Gaillard models

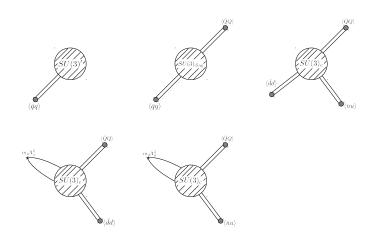
from [5]

	SU(6)	SU(3')		
Q_L		1		
U_L^c	Ō	1		
D_L^c	Ō	1		
Ψ_L	20	1		
q_L'	1	Ō		
$u_L^{\prime c}$	1			
$d_L^{\prime c}$	1			
Δ				

	$SU(3)_c$	$SU(3)_{\rm diag}$	$SU(2)_L$	$U(1)_Y$
q_L		1		$\frac{1}{6}$
$\tilde{\mathbf{q}}_{\mathbf{L}}$	1			$\frac{1}{6}$
u^c_L	Ō	1	1	$-\frac{2}{3}$
$\tilde{\mathbf{u}}_{\mathbf{L}}^{\mathbf{c}}$	1	Ō	1	$-\frac{2}{3}$
d_L^c	Ō	1	1	$\frac{1}{3}$
$egin{aligned} d^c_L \ & \mathbf{ ilde{d}^c_L} \end{aligned}$	1	Ō	1	$\frac{1}{3}$ $\frac{1}{3}$
ψ_L		Ō	1	0
ψ^c_L	Ō		1	0
$2 \times \psi_{\nu}$	1	1	1	1
$\mathbf{q}_{\mathbf{L}}'$	1	Ō		$-\frac{1}{6}$
$\mathbf{u_L^{\prime c}}$	1		1	$\frac{2}{3}$
$\mathbf{d_{L}^{\prime c}}$	1		1	$-\frac{1}{3}$
_	_	-	1	0

Alexey Kivel

Backup


Backup: Gaillard models

from [5]

Alexey Kivel

Backup

Backup: Gaillard models

Alexey Kivel

Backup

Sources I

- Prateek Agrawal and Kiel Howe. Factoring the Strong CP Problem. *JHEP*, 12:029, 2018.
- Martin Bauer, Matthias Neubert, and Andrea Thamm. Collider Probes of Axion-Like Particles. *JHEP*, 12:044, 2017.
- Kiwoon Choi and Jihn E Kim. Dynamical axion. Physical Review D, 32(7):1828, 1985.
- Michael Dine, Willy Fischler, and Mark Srednicki.
 A simple solution to the strong cp problem with a harmless axion.

Physics letters B, 104(3):199–202, 1981.

Alexey Kivel

Backup

Sources II

M. K. Gaillard, M. B. Gavela, R. Houtz, P. Quilez, and R. Del Rey.

Color unified dynamical axion.

Eur. Phys. J., C78(11):972, 2018.

Ian-Woo Kim and Jihn E. Kim.

Modification of decay constants of superstring axions:

Effects of flux compactification and axion mixing.

Phys. Lett., B639:342-347, 2006.

Jihn E Kim.

Weak-interaction singlet and strong cp invariance.

Physical Review Letters, 43(2):103, 1979.

Alexey Kivel

Backup

Sources III

- Jihn E. Kim and Gianpaolo Carosi.
 Axions and the Strong CP Problem.
 Rev. Mod. Phys., 82:557–602, 2010.
 [erratum: Rev. Mod. Phys.91,no.4,049902(2019)].
- Roberto D Peccei and Helen R Quinn.
 Cp conservation in the presence of pseudoparticles.

 Physical Review Letters, 38(25):1440, 1977.
- Gerard 't Hooft.

 Symmetry Breaking Through Bell-Jackiw Anomalies.

 Phys. Rev. Lett., 37:8–11, 1976.

 [,226(1976)].
- M. Tanabashi et al.
 Review of Particle Physics.
 Phys. Rev., D98(3):030001, 2018.

Alexey Kivel

Backup

Steven Weinberg.

A New Light Boson?

Physical Review Letters, 40(4):223–226, January 1978.

Frank Wilczek.

Problem of strong p and t invariance in the presence of instantons.

Physical Review Letters, 40(5):279, 1978.