

Supersymmetric Alignment Models for (g-2)µ

Motoo Suzuki

T. D. Lee Institute & Shanghai Jiao Tong U.

Based on Y. Nakai (TDLI&SJTU), M. Reece (Harvard U.), arXiv: 2107.10268.

Muon g-2 anomaly

- g-factor : spin-magnetic field interaction
 - g=2 : tree level
 - a=(g-2)/2 : radiative correction

Muon g-2: experimental results & SM prediction

From Fermilab webpage

New physics contribution

New physics contribution to muon g-2

$$\Delta a_{\mu,\mathrm{NP}} \approx \mathcal{O}(10^{-9})$$

$$m_{\mathrm{NP}} \lesssim 1 \, \mathrm{TeV}$$

SUSY contributions

We focus on SUSY models

FCNC

e.g. Gravity mediation

$$m_{
m slepton}^2 \sim \tilde{m}^2 \left(egin{array}{ccc} 1 & \delta & \delta \\ \delta & 1 & \delta \\ \delta & \delta & 1 \end{array}
ight)$$

$$\mu \to e + \gamma$$
 \bullet $\tilde{m} \gg 1 \, \mathrm{TeV}$

$$\tilde{m} \gg 1 \, \text{TeV}$$

 $\delta \sim 0.3$

Alignment

Alignment: a mechanism to suppress FCNCs

In the basis that Yukawa diagonal

FCNC constraints can be relaxed by approximate alignment

Alignment

Horizontal (flavor) symmetries

- Flavor structure of SM fermions + alignment
- Approximate alignment of quark-squark by horizontal symmetries
 Nir and Seiberg (1993)
- Approximate alignment of lepton-slepton by horizontal symmetries
 Ben-Hamo and Nir (1994)
 Grossman and Nir (1995)

SM flavor structure

- CKM matrix is presented in the Wolfenstein's parameterization
 - the order of magnitude of mixing angle is given by

$$|V_{12}^{\rm CKM}| \sim \lambda$$
, $|V_{23}^{\rm CKM}| \sim \lambda^2$, $|V_{13}^{\rm CKM}| \sim \lambda^3$
 $\lambda \sim 0.2$

Quark mass ratio can be also expressed in powers of λ

$$m_c/m_t \sim \lambda^3$$
, $m_u/m_t \sim \lambda^6 - \lambda^7$, $m_b/m_t \sim \lambda^2$, $m_s/m_b \sim \lambda^2$, $m_d/m_b \sim \lambda^4$

Lepton mass ratio and mixing angles can be also expressed by λ

Horizontal symmetry

Hierarchy and smallness of quark and lepton sector parameters

'tHooft Naturalness

Small numbers are natural only if an exact symmetry is acquired when they are set to zero

- Let us consider ${\bf U(1)H}$ horizontal symmetry that acts on quarks and leptons H(X): ${\bf U(1)H}$ charge of ${\bf X}$
- e.g. up-type Yukawa terms

$$W \sim H_u Q_i U_j$$
$$H(H_u) + H(Q_i) + H(\bar{U}_j) \neq 0$$

Horizontal symmetry

Hierarchy and smallness of quark and lepton sector parameters

'tHooft Naturalness

Small numbers are natural only if an exact symmetry is acquired when they are set to zero

- Let us consider ${\bf U(1)H}$ horizontal symmetry that acts on quarks and leptons H(X): ${\bf U(1)H}$ charge of X
- e.g. up-type Yukawa terms

$$W \sim H_u Q_i \bar{U}_j$$

$$H(H_u) + H(Q_i) + H(\bar{U}_j) \neq 0$$

Horizontal symmetry

Introducing flavon "S" which has a non-zero U(1)H charge and VEV

$$H(S) \neq 0$$

$$\langle S \rangle = \lambda \Lambda_{\text{UV}} \ (\lambda \sim 0.2)$$

Fermion mass ratio and mixing can be explained by couplings with flavon

$$c.f.$$
 $W \sim S^{a_{ij}} H_u Q_i \bar{U}_j$ ($\Lambda_{\rm UV} = 1 \; {
m unit}$) $Y_u = c^u_{ij} \langle S \rangle^{a_{ij}}$

A simple model

Introducing a flavon S1

$$H(S_1) = -1$$

Assuming non-negative U(1)H charges for matter,
 the mass ratios and mixing matrices are estimated by simple formula

$$|V_{ij}^{\mathrm{PMNS}}| \sim \lambda^{|H(L_i) - H(L_j)|}$$

We also obtain soft mass squared matrices

$$M_{\tilde{L}\,ij}^2 = \tilde{m}_\ell^2 \,\lambda^{|H(L_i) - H(L_j)|}$$

relation between mixing matrices and soft mass squared

A simple model

Introducing a flavon S1

$$H(S_1) = -1$$

Assuming non-negative U(1)H charges for matter,
 the mass ratios and mixing matrices are estimated by simple formula

$$|V_{ij}^{\mathrm{PMNS}}| \sim \lambda^{|H(L_i) - H(L_j)|}$$

We also obtain soft mass squared matrices

$$M_{\tilde{L}\,ij}^2 = \tilde{m}_\ell^2 \,\lambda^{|H(L_i) - H(L_j)|}$$

— relation between mixing matrices and soft mass squared

FCNC in lepton sector

Mixing matrices - soft mass matrices relation

$$|V_{12}^{\mathrm{PMNS}}| \sim \lambda \longrightarrow M_{\tilde{L}12}^2 \sim \tilde{m}_{\ell}^2 \lambda$$

$$\lambda \sim 0.2 \longrightarrow \tilde{m}_{\ell} \gg 1 \,\mathrm{TeV}$$
 $\mu \to e + \gamma$

Our work

Y. Nakai, M. Reece, M.S. (2021)

We study horizontal symmetry models to explain muon g-2

- one horizontal symmetry and several flavons
- two horizontal symmetries and several flavons

Two horizontal symmetries

$$U(1)_{H_1} \times U(1)_{H_2}$$

Two flavons

$$S_1$$
 S_2 $(-1,0)$ $(0,-1)$

Flavon VEVs

$$\langle S_1 \rangle \sim \lambda, \langle S_2 \rangle \sim \lambda^2$$

An example charge assignment

$$Q_1$$
 Q_2 Q_3 \bar{u}_1 \bar{u}_2 \bar{u}_3
 $(3,0)$ $(0,1)$ $(0,0)$ $(-2,3)$ $(1,0)$ $(0,0)$
 \bar{d}_1 \bar{d}_2 \bar{d}_3
 $(-3,2)$ $(2,-1)$ $(0,0)$
 L_1 L_2 L_3 \bar{e}_1 \bar{e}_2 \bar{e}_3
 $(5,0)$ $(0,2)$ $(0,2)$ $(-4,2)$ $(2,-2)$ $(0,-2)$

Two horizontal symmetries

Soft mass matrices are suppressed well

$$M_{\widetilde{L}}^2 \sim \widetilde{m}^2 \begin{pmatrix} 1 & \lambda^9 & \lambda^9 \\ \lambda^9 & 1 & 1 \\ \lambda^9 & 1 & 1 \end{pmatrix}, M_{\widetilde{\overline{e}}}^2 \sim \widetilde{m}^2 \begin{pmatrix} 1 & \lambda^{14} & \lambda^{12} \\ \lambda^{14} & 1 & \lambda^2 \\ \lambda^{12} & \lambda^2 & 1 \end{pmatrix}$$

• $\mu \rightarrow e + \gamma$

$$\tilde{m}_{\ell} < 1\,\mathrm{TeV}$$

However, eEDM constraint is also stringent...

$$\tilde{m}_{\ell} \gg 1 \, \text{TeV}$$

Spontaneous CP violation

- Suppression of eEDM by SCPV
- Consider an additional flavon

$$S_N$$
 $(-N,0)$

Superpotential is

$$W_S = Z(aS_N^2 + bS_N S_1^N + cS_1^{2N}),$$

SN can obtain a complex phase

$$\frac{\langle S_N \rangle}{\langle S_1 \rangle^N} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad b^2 - 4ac < 0$$
$$|\langle S_N \rangle| \sim \lambda^N$$

eEDM

Flavon with complex phase

$$S_4$$
 $(-4,0)$

- Dominant flavor diagonal contribution
- Electron electric dipole moment

$$|d_e^{\text{SUSY}}| \simeq 10^{-24} \left(\frac{a_{\mu}}{2 \times 10^{-9}}\right) |\arg(\mu)| e \text{ cm}$$

- CP phase in mu-term $\mu = |\mu|(1+i\kappa\,\lambda^8)$

Result

future expected reach

$$|d_e| = 10^{-30} e \,\mathrm{cm}$$
$$\arg(\mu) = \kappa \,\lambda^8$$

- decoupling of \widetilde{e}_i
- parameters of $\tan\beta=50,\ \mu=M_2=2M_1$

Future eEDM experiment will search for favored region

Conclusion

- New physics to explain muon g-2
- SUSY model is a prime candidate
- Horizontal symmetry provides fermion flavor structure and suppressed FCNCs = alignment
- A simple model predicts large FCNCs
- We considered SUSY horizontal symmetry models by one or two horizontal symmetries with multi-flavons
- We have developed models where muon g-2 can be explained by avoiding FCNC and CP observable constraints
- Future eEDM experiment will search for the favored parameter space
- Future study : Dark matter?

Back up

Collider constraint

From M. Endo, K. Hamaguchi, S. Iwamoto, T. Kitahara (2021)

Flavor & CP observables

Observable	Experimental bound	Model with S_3	Model with S_4
$ \epsilon_K $	$2.228(11) \times 10^{-3} [56]$	$\sim 10^{-3}$	$\sim 10^{-7}$
$ \Delta M_D $	$0.63^{+0.27}_{-0.29} \times 10^{-14} \text{GeV}$ [56]	$\sim 5 \times 10^{-17} \mathrm{GeV}$	$\sim 5 \times 10^{-17} \mathrm{GeV}$
nEDM	$\leq 10^{-26} e \text{ cm } [62]$	$\sim 10^{-28} e {\rm cm}$	$\sim 10^{-28} e {\rm cm}$
$Br(\mu \to e + \gamma)$	$\leq 4.2 \times 10^{-13} \ [64]$	$\sim 10^{-16}$	$\sim 10^{-16}$
eEDM	$\leq 1.1 \times 10^{-29} \ e \text{cm} \ [23]$	$\sim 5 \times 10^{-29} e \mathrm{cm}$	$\sim 10^{-30} e {\rm cm}$

TABLE I. CP and flavor observables and their current experimental bounds. The estimation of the SUSY contribution to each observable in the models with $U(1)_{H_1} \times U(1)_{H_2}$ is also shown. We take $\tilde{m}_q = M_3 = 5 \,\text{TeV}$, $\tilde{m}_\ell = M_{1,2} = \mu = 500 \,\text{GeV}$ and $\tan \beta = 50$. The typical mass scales of the trilinear soft SUSY breaking terms are taken as \tilde{m}_q , \tilde{m}_ℓ for squarks and sleptons, respectively.

Flavor structure

$$\begin{split} Y_{u} \sim & \begin{pmatrix} \lambda^{7} & \lambda^{4} & \lambda^{3} \\ 0 & \lambda^{3} & \lambda^{2} \\ 0 & \lambda & 1 \end{pmatrix}, \quad Y_{d} \sim \begin{pmatrix} \lambda^{4} & 0 & \lambda^{3} \\ 0 & \lambda^{2} & \lambda^{2} \\ 0 & 0 & 1 \end{pmatrix}, \\ Y_{e} \sim & \begin{pmatrix} \lambda^{5} & 0 & 0 \\ 0 & \lambda^{2} & 1 \\ 0 & \lambda^{2} & 1 \end{pmatrix}, \quad Y_{\nu} \sim \begin{pmatrix} \lambda^{10} & \lambda^{9} & \lambda^{9} \\ \lambda^{9} & \lambda^{8} & \lambda^{8} \\ \lambda^{9} & \lambda^{8} & \lambda^{8} \end{pmatrix}. \\ M_{\tilde{Q}}^{2} \sim \tilde{m}^{2} \begin{pmatrix} 1 & \lambda^{5} & \lambda^{3} \\ \lambda^{5} & 1 & \lambda^{2} \\ \lambda^{3} & \lambda^{2} & 1 \end{pmatrix}, \quad M_{\tilde{e}}^{2} \sim \tilde{m}^{2} \begin{pmatrix} 1 & \lambda^{9} & \lambda^{8} \\ \lambda^{9} & 1 & \lambda \\ \lambda^{8} & \lambda & 1 \end{pmatrix}, \\ M_{\tilde{e}}^{2} \sim \tilde{m}^{2} \begin{pmatrix} 1 & \lambda^{11} & \lambda^{7} \\ \lambda^{11} & 1 & \lambda^{4} \\ \lambda^{7} & \lambda^{4} & 1 \end{pmatrix}, \\ M_{\tilde{L}}^{2} \sim \tilde{m}^{2} \begin{pmatrix} 1 & \lambda^{9} & \lambda^{9} \\ \lambda^{9} & 1 & 1 \\ \lambda^{9} & 1 & 1 \end{pmatrix}, \quad M_{\tilde{e}}^{2} \sim \tilde{m}^{2} \begin{pmatrix} 1 & \lambda^{14} & \lambda^{12} \\ \lambda^{14} & 1 & \lambda^{2} \\ \lambda^{12} & \lambda^{2} & 1 \end{pmatrix}. \end{split}$$

Another charge assignment

Charge assignment

$$L_1$$
 L_2 L_3 \bar{e}_1 \bar{e}_2 \bar{e}_3 $(7,0)$ $(2,2)$ $(0,3)$ $(-6,2)$ $(-2,-1)$ $(0,-3)$

Yukawa matrices

$$Y_e \sim \left(egin{array}{ccc} \lambda^5 & 0 & 0 \ 0 & \lambda^2 & 0 \ 0 & 0 & 1 \end{array}
ight), \qquad Y_
u \sim \left(egin{array}{ccc} \lambda^{14} & \lambda^{13} & \lambda^{13} \ \lambda^{13} & \lambda^{12} & \lambda^{12} \ \lambda^{13} & \lambda^{12} & \lambda^{12} \end{array}
ight)$$

Soft mass squared mass matrices

$$M_{\widetilde{L}}^2 \sim \widetilde{m}^2 \left(\begin{array}{ccc} 1 & \lambda^9 & \lambda^{13} \\ \lambda^9 & 1 & \lambda^4 \\ \lambda^{13} & \lambda^4 & 1 \end{array} \right), \ M_{\widetilde{\overline{e}}}^2 \sim \widetilde{m}^2 \left(\begin{array}{ccc} 1 & \lambda^{10} & \lambda^{16} \\ \lambda^{10} & 1 & \lambda^6 \\ \lambda^{16} & \lambda^6 & 1 \end{array} \right)$$