Multipoint Contormal Blocks trom
Gaudin models

DESY Theory Workshop, 21/09/2021
Lorenzo Quintavalle

with I. Buri¢, S. Lacroix, J. Mann and V. Schomerus
[2009.11882] [2105.00021]

SAGEX

Scattering Amplitudes:
from Geometry to Experiment

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skfodowska-Curie grant agreement No. 764850 (SAGEX).



Reminder: Four-point conformal bootstrap

Conformal bootstrap: consistency of different OPE expansions to constrain CFT data
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Conformal blocks g z,Z) are eigenfunctions of quadratic and quartic Casimirs [Dolan,Osborn]
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Goal: Multipoint Conformal Blocks
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Can we extend this to a higher number of points? ‘ ‘ ‘

P2
b1 ®s

@5
 One multi-point function — infinitely many four-point functions!
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e Alternative path to spinning four-point functions

* Interplay between analytic bootstrap & scattering amplitudes [Bercini,Gongalves,Vieira]

Multipoint blocks are a crucial element

#(cross ratios) = Nd — dim SO(d+1,1)] == Need more commuting operators than just Casimirs!
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*N large enough



Strategy: 50(d+1, 1) Gaudin Models

Lax Matrix: Gaudin Hamiltonians:
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Commute among themselves and with diagonal action of the conformal group
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Application to conformal blocks is obtained by taking limits on the w; that reproduce the OPE channel.
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The individual Casimirs and “vertex operators” are extracted manipulating the 2 dependence



Result: operators for any number of pomts

Casimir operators at every internal leg r
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“Vertex operators” for non-trivial vertices p
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Number of independent vertex operators matches number of tensor structures
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—> distinguished basis of tensor structures: eigenfunctions of reduced vertex operators (OPE limits)



Conclusions & Outlook
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Multipoint conformal blocks = eigenfunctions of special limits of Gaudin models
Gaudin eigenfunctions — interpolation between OPE channels [Eberhardt, Komatsu, Mizera]
[Roehrig,Skinner]

Fourth-order reduced vertex system — Elliptic Calogero-Moser models [2108.00023]

Partial light-cone limits?



